Document Type: Short Review Article

Authors

1 The Education Journey, Vile Parle East, Mumbai – 400055, Maharashtra, India

2 Institute of Chemical Technology (ICT), Matunga, Mumbai – 400019, Maharashtra, India

10.33945/SAMI/jcr.2019.4.4

Abstract

Rhodium is a rare and highly expensive metal with widespread and diverse industrial applications. This makes rhodium recovery and recycling extremely important. Various processes and methods have been developed for rhodium recovery which are very specific to the nature of the application of rhodium.  This research study aims at providing a brief yet holistic, classified overview of the many methods that are being employed over the last few decades for rhodium recovery at both laboratory and industrial scale. Specifically, the focus is on the processes employed for recovery of rhodium from waste water, radioactive waste, catalysts, scrap and by leaching with the objective of facilitating a better understanding of such methods. This research study enables researchers to better understand the various processes employed in rhodium recovery.

Graphical Abstract

Keywords

[1] Cardarelli, F. (2008). Materials handbook: a concise desktop reference. Springer Science & Business Media.

[2] Weisberg, A. M. (1999). Rhodium plating. Metal Finishing, 1(97), 297-301.

[3] Pushpavanam, M., Raman, V., & Shenoi, B. A. (1981). Rhodium-electrodeposition and applications. Surface Technology, 12(4), 351-360.

[4] Keitel, W., & Zschiegner, H. E. (1931). Electrodeposition of Platinum, Palladium and Rhodium. Transactions of The Electrochemical Society, 59(1), 273-275.

[5] Johnson, R. W. (1961). Immersion plating of the platinum group metals. Journal of The Electrochemical Society, 108(7), 632-635.

[6] Bulska, E., & Jędral, W. (1995). Application of palladium-and rhodium-plating of the graphite furnace in electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 10(1), 49-53.

[7] Ojima, I., & Vidal, E. S. (1998). Rhodium-catalyzed cyclohydrocarbonylation: Application to the synthesis of (+)-prosopinine and (−)-deoxoprosophylline. The Journal of Organic Chemistry, 63(22), 7999-8003.

[8]Hyster, T. K., & Rovis, T. (2011). An improved catalyst architecture for rhodium (III) catalyzed C–H activation and its application to pyridone synthesis. Chemical science, 2(8), 1606-1610.

[9] Jayakumar, J., Parthasarathy, K., & Cheng, C. H. (2012). One‐Pot Synthesis of Isoquinolinium Salts by Rhodium‐Catalyzed C H Bond Activation: Application to the Total Synthesis of Oxychelerythrine. Angewandte Chemie International Edition, 51(1), 197-200.

[10] Helmers, E., & Mergel, N. (1998). Platinum and rhodium in a polluted environment: studying the emissions of automobile catalysts with emphasis on the application of CSV rhodium analysis. Fresenius' journal of analytical chemistry, 362(6), 522-528.

[11] Stankovića, V., & Comninellisb, C. Rhodium recovery and recycling from spent materials.

[12] Harjanto, S., Cao, Y., Shibayama, A., Naitoh, I., Nanami, T., Kasahara, K., ... & Fujita, T. (2006). Leaching of Pt, Pd and Rh from automotive catalyst residue in various chloride based solutions. Materials Transactions, 47(1), 129-135.

[13] Aktas, S. (2011). Rhodium recovery from rhodium-containing waste rinsing water via cementation using zinc powder. Hydrometallurgy, 106(1-2), 71-75.

[14] Morcali, M. H., Zeytuncu, B., & Yucel, O. (2013). Rhodium cementation from spent plating solution using Taguchi’s method. Canadian Metallurgical Quarterly, 52(4), 488-491.

[15] Ngwenya, N., & Whiteley, C. G. (2006). Recovery of rhodium (III) from solutions and industrial wastewaters by a sulfate‐reducing bacteria consortium. Biotechnology progress, 22(6), 1604-1611.

[16] Gaita, R., & Al-Bazi, S. J. (1995). An ion-exchange method for selective separation of palladium, platinum and rhodium from solutions obtained by leaching automotive catalytic converters. Talanta, 42(2), 249-255.

[17] Suoranta, T., Zugazua, O., Niemelä, M., & Perämäki, P. (2015). Recovery of palladium, platinum, rhodium and ruthenium from catalyst materials using microwave-assisted leaching and cloud point extraction. Hydrometallurgy, 154, 56-62.

[18] Shyam, T., Ajit, A., Jangid, R. (2020),Optimized rhodium dissolution process using aqua regia, Advanced Journal of Chemistry, Section A: Theoretical , Engineering and Applied Chemistry, 3(2),159-164.

[19] Tatarnikov, A. V., Sokolskaya, I., Shneerson, Y. M., Lapin, A. Y., & Goncharov, P. M. (2004). Treatment of platinum flotation products. Platinum Metals Review, 48(3), 125-132.

[20] Miroshnichenko, A. A. (2016). Sorption recovery of platinum metals from compound solutions. Procedia Engineering, 152, 8-12.

[21] Friedrich, J. P. (1975). U.S. Patent No. 3,899,442. Washington, DC: U.S. Patent and Trademark Office.

[22] Gartner, R., Cornils, B., Bexten, L., & Kupies, D. (1985). U.S. Patent No. 4,504,588. Washington, DC: U.S. Patent and Trademark Office.

[23] Hoffmann, J. E. (1992). Recovering precious metals from electronic scrap. JOM, 44(7), 43-48.

[24] Wiraseranee, C., Yoshikawa, T., Okabe, T. H., & Morita, K. (2013). Effect of Al2O3, MgO and CuOx on the dissolution behavior of rhodium in the Na2O-SiO2 slags. Journal of Mining and Metallurgy B: Metallurgy, 49(2), 131-138.

[25] Kayanuma, Y., Okabe, T. H., Mitsuda, Y., & Maeda, M. (2004). New recovery process for rhodium using metal vapor. Journal of alloys and compounds, 365(1-2), 211-220.

[26] Hagelüken, C. (2006). Recycling of electronic scrap at Umicore's integrated metals smelter and refinery. Erzmetall, 59(3), 152-161.

[27] Sant, B. R., & Beamish, F. E. (1961). New fire assay method for rhodium. Analytical Chemistry, 33(2), 304-305.

[28] Diamantatos, A. (1986). Accurate determination of platinum, palladium, gold and silver in ores and concentrates by wet chemical analysis of the lead assay button. Analyst, 111(2), 213-215.

[29] Wiraseranee, C., Okabe, T. H., & Morita, K. (2013). Dissolution behavior of rhodium in the Na 2 O-SiO 2 and CaO-SiO 2 slags. Metallurgical and Materials Transactions B, 44(3), 584-592.

[30] Kayanuma, Y., Okabe, T. H., & Maeda, M. (2004). Metal vapor treatment for enhancing the dissolution of platinum group metals from automotive catalyst scrap. Metallurgical and Materials Transactions B, 35(5), 817-824.

[31] Hoffman Jr, W. A. (1968). Rhodium Species In Radioactive Waste Solutions (No. ARH-732). Atlantic Richfield Hanford Co., Richland, Wash.

[32] Bush, R. P. (1991). Recovery of platinum group metals from high level radioactive waste. Platinum Metals Review, 35(4), 202-208.

[33] Smith, F. J., & Mc Duffie, H. F. (1981). Recovery of nonradioactive palladium and rhodium from radioactive waste. Separation Science and Technology, 16(9), 1071-1079.