Document Type : Review Article
Authors
1 Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
2 Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef , Egypt
Abstract
In this review we synthesized and conducted a computational studies on Pyrazolo pyrimidine’s derivatives that were carried out through density functional theory level utilizing HF/6−311+G**and B3LYP/6−311+G**. Charge transfer occured through molecule was shown by the calculation of HOMO and LUMO energies. The electric dipole moment values (l) of the molecule were counted calculations of DFT. Some geometrical and structural parameters such as total energies (E), relative energies (DE), (bond length in Å, angles in degree), energy gap, relative Gibbs free energy, dipole moment, and molecular electrostatic potentials (MEP) were studied.
Graphical Abstract
Keywords
Main Subjects
[1] Ahmed, S. A., Elghandour, A. H., & Elgendy, H. S. (2014). Synthesis of pteridines derivatives from different heterocyclic compounds. Der Pharma Chemica, 6(3), 194-219..
[2] Ahmed, S. A., Elgendy, H. S., & Younis, W. O. (2015). Pyrazolopyrimidines: Synthesis, Chemical Reactions and Biological Activity. ChemInform, 46(14), no-no.
[3] Hussein S. H. Mohamed, M. N., Sayed A. Ahmed. (2018) Novel synthesis and characterization of Aryl Benzothiazoles with antimicrobial activity, der pharma chemical 10(5), 121-127.
[4] Contreras, J. G., Seguel, G. V., & Gnecco, J. A. (1992). The IR and Raman spectra of 2-amino pyrimidine complexes of some Zn (II), Cd (II) and Hg (II) halides. Spectrochimica Acta Part A: Molecular Spectroscopy, 48(4), 525-532.
[5] Pullman, B., & Pullman, A. (1971). Electronic aspects of purine tautomerism. In Advances in Heterocyclic Chemistry(Vol. 13, pp. 77-159). Academic Press.
[6] Contreras, J. G., & Seguel, G. V. (1982). Solid State Vibrational Spectra of Tetrapropylammonium Tribromomercurate (II). Spectroscopy Letters, 15(9), 671-677.
[7] Hayat, F., Salahuddin, A., Umar, S., & Azam, A. (2010). Synthesis, characterization, antiamoebic activity and cytotoxicity of novel series of pyrazoline derivatives bearing quinoline tail. European journal of medicinal chemistry, 45(10), 4669-4675.
[8] Budakoti, A., Abid, M., & Azam, A. (2007). Syntheses, characterization and in vitro antiamoebic activity of new Pd (II) complexes with 1-N-substituted thiocarbamoyl-3, 5-diphenyl-2-pyrazoline derivatives. European journal of medicinal chemistry, 42(4), 544-551.
[9] Parveen, H., Hayat, F., Mukhtar, S., Salahuddin, A., Khan, A., Islam, F., & Azam, A. (2011). Synthesis, characterization and biological evaluation of novel 2, 4, 6-trisubstituted bis-pyrimidine derivatives. European journal of medicinal chemistry, 46(9), 4669-4675.
[10] Siddiqui, S. M., Salahuddin, A., & Azam, A. (2013). Pyrazolo [3, 4-d] pyrimidine analogues: synthesis, characterization and their in vitro antiamoebic activity. Medicinal Chemistry Research, 22(2), 775-781.
[11] Hussein S. H. Mohamed, H. S. B., Sayed A. Ahmed. (2017) Evaluation of N-Sulfanoamide Pyridines from Chalchon with Anticancer Effect, nternational Journal of Innovative Research in Science, Engineering and Technology 6, 15972-15981.
[12] Hussein S. H. Mohamed, M. N., Sayed A. Ahmed. (2017) Synthesis, Chemical reactions and applications of Aryl azo Thiazole, International Journal of advanced research, 5(7), 2426-2496.
[13] Azzama, E. M., Ahmedb, S. A., Mohamedb, H. H., Adlyb, M. A., & Gada, E. A. (2019). Removal of iron (II) from wastewater in oil field using 3-(p-methyl) phenyl-5-thionyl-1, 2, 4-triazoline assembled on silver nanoparticles. DESALINATION AND WATER TREATMENT, 142, 244-251.
[14] Bekhit, A. A., & Abdel-Aziem, T. (2004). Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorganic & medicinal chemistry, 12(8), 1935-1945..
[15] Sayed A. Ahmed, H. S. E. (2014) Synthesis of some new purine and mercaptopurine analogues as antimetabolites, International Journal of advanced research, 2(5),865-876.
[16] Yadava, U., Singh, M., & Roychoudhury, M. (2013). Pyrazolo [3, 4-d] pyrimidines as inhibitor of anti-coagulation and inflammation activities of phospholipase A 2: insight from molecular docking studies. Journal of biological physics, 39(3), 419-438..
[17] Elion, G. B., Callahan, S., Nathan, H., Bieber, S., Rundles, R. W., & Hitchings, G. H. (1963). Potentiation by inhibition of drug degradation: 6-substituted purines and xanthine oxidase. Biochemical Pharmacology, 12(1), 85-93.
[18] Schenone, S., Brullo, C., Musumeci, F., & Botta, M. (2010). Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert opinion on investigational drugs, 19(8), 931-945.
[19] Sayed A. Ahmed, O. M. A., Hussein S. Elgendy. (2014) Novel Synthesis of Purine analogues derivatives and Thieno [2,3-b]pyridine derivatives with anticancer and antioxidant activity, Journal of pharmacy research, 8(9), 1303-1313.
[20] Casini, N., Forte, I. M., Mastrogiovanni, G., Pentimalli, F., Angelucci, A., Festuccia, C., ... & Botta, M. (2015). SRC family kinase (SFK) inhibition reduces rhabdomyosarcoma cell growth in vitro and in vivo and triggers p38 MAP kinase-mediated differentiation. Oncotarget, 6(14), 12421.
[21] Carlomagno, F., Vitagliano, D., Guida, T., Basolo, F., Castellone, M. D., Melillo, R. M., ... & Santoro, M. (2003). Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl) pyrazolo [3, 4-d] pyrimidine (PP2). The Journal of Clinical Endocrinology & Metabolism, 88(4), 1897-1902.
[22] Fogarasi, G., Pulay, P., & Durig, J. R. (1985). Vibrational spectra and structure. Vibrational Spectra and Structure, 14, 125.
[23] Schaefer, H. (Ed.). (2012). Applications of electronic structure theory (Vol. 4). Springer Science & Business Media.
[24] Islam, M. J., Kumer, A., Sarker, N., Paul, S., & Zannat, A. (2019). The prediction and theoretical study for chemical reactivity, thermophysical and biological activity of morpholinium nitrate and nitrite ionic liquid crystals: A DFT study. Advanced Journal of Chemistry-Section A (Theoretical, Engineering and Applied Chemistry), 2(4, pp. 266-385), 316-326.
[25] Javanshir, Z., Jameh-Bozorghi, S., & Peyki, P. (2018). DFT calculations of the neighboring groups effects on cheletropic reaction of 2, 5-Dihydrothiophene sulfone. Advanced Journal of Chemistry-Section A, 1(2. pp. 66-126), 117-126.
[26] Arivazhagan, M. (2011). Vibrational analysis of 4-amino pyrazolo (3, 4-d) pyrimidine A joint FTIR, Laser Raman and scaled quantum mechanical studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1), 228-234.
[27] Fekri, M. H. (2019). Study of Electrochemical and Electronical Properties on the Some Schiff Base Ni Complexes in DMSO Solvent by Computational Methods. Advanced Journal of Chemistry-Section A, 2(1, pp. 1-93.), 14-20..
[28] Kumer, A., Sarker, N., Paul, S., & Zannat, A. (2019). The Theoretical Prediction of Thermophysical properties, HOMO, LUMO, QSAR and Biological Indics of Cannabinoids (CBD) and Tetrahhdrocannabinol (THC) by Computational Chemistry. Advanced Journal of Chemistry-Section A (Theoretical, Engineering and Applied Chemistry), 2(3. pp. 184-265), 190-202.
[29] Sanz, F., Manaut, F., José, J., Segura, J., Carbó, M., & De la Torre, R. (1988). Automatic determination of MEP patterns of molecules and its application to caffeine metabolism inhibitors. Journal of Molecular Structure: THEOCHEM, 170, 171-180.
[30] Abood, N. A. (2013). SH Hlban J. Chem. Pharm. Res, 5, 324-331.
[31] Yang, J., Yan, H., Wang, G., Zhang, X., Wang, T., & Gong, X. (2014). Computational investigations into the substituent effects of–N 3,–NF 2,–NO 2, and–NH 2 on the structure, sensitivity and detonation properties of N, N′-azobis (1, 2, 4-triazole). Journal of molecular modeling, 20(4), 2148.
[32] Scrocco, E., & Tomasi, J. (1973). The electrostatic molecular potential as a tool for the interpretation of molecular properties. In New concepts II (pp. 95-170). Springer, Berlin, Heidelberg.
[33] March, N. H. (1996). Electrostatic Potential, Bond Density and Bond Order in Molecules and Clusters. In Theoretical and Computational Chemistry (Vol. 3, pp. 619-647). Elsevier.
[34] Gomaa, E. G. A., Abdel Hady, M. H., Mahmoud, M. H., & El Kot, D. A. (2019). Cyclic Voltammetry of Aqueous CoCl2 in the Presence of Ceftriaxone Disodium Salt (Cefs) at 298.65 K. Advanced Journal of Chemistry-Section A, 2(1, pp. 1-93.), 1-13.
[35] Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica chimica acta, 28(3), 213-222.
[36] Hosseini, P., & Rezaei Sameti, M. (2019). The AIM, RDG, NBO, Quantum and Structural Study of Adsorption of Phosgene Gas on the Surface of Pristine and Al, P Doped Ga12N12 Nano Cluster: A DFT Method. Chemical Methodologies, 3(5, pp. 519-683), 607-625.
[37] Mosallanejad, B. (2019). Phthalimide Derivatives: New Promising Additives for Functional Electrolyte in Lithium-ion Batteries. Chemical Methodologies, 3(2. pp. 145-275), 261-275.
[38] Ahmadinejad, N., & Talebi Trai, M. (2019). Computational NQR− NBO Parameters and DFT Calculations of Ampicillin and Zwitterion (Monomer and Dimer Structures). Chemical Methodologies, 3(1. pp. 1-144), 55-66.
[39] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M., Cheeseman, J. R., ... & Nakatsuji, H. (2009). Gaussian 09, Revision D. 01, Gaussian. Inc.: Wallingford, CT.
[40] Rezaei Sameti, M., & Amirian, B. (2018). A Quantum, NBO, RDG study the interaction of cadmium ion with the pristine, C, P and C&P doped (4, 4) armchair boron nitride nanotube (BNNTs). Asian Journal of Nanosciences and Materials, 1(4. pp. 172-293), 262-270.
[41] Houshmand, F., Neckoudaria, H., & Baghdadi, M. (2019). Host-guest interaction in chitosan–MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2 (5H)-furanone) complexes in water solution: Density Functional Study. Asian Journal of Nanosciences and Materials, 2(1, pp. 1-119.), 49-65.
[42] Korivand, N., & Rezaei-Sameti, M. Asian Journal of Nanoscience and Materials.
[43] Prabavathi, N., Nilufer, A., Krishnakumar, V., & Akilandeswari, L. (2012). Spectroscopic, electronic structure and natural bond analysis of 2-aminopyrimidine and 4-aminopyrazolo [3, 4-d] pyrimidine: A comparative study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96, 226-241.
[44] Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Nakatsuji, H. (2009). Gaussian 09, revision a. 02, gaussian. Inc., Wallingford, CT, 200, 28.
[45] Becke, A. D. (1993) Density‐functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98(7), 5648-5652.
[46] Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785.
[47] Krishnakumar, V., & Dheivamalar, S. (2007). Density functional theory studies on tautomeric stability and infrared and Raman spectra of some purine derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68(3), 823-832.
[48] Xue, Y., Xu, D., Xie, D., & Yan, G. (2000). Density functional theory studies on tautomeric stability and infrared spectra of 2-chloroadenine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56(10), 1929-1938.
[49] Datta, A., & Pati, S. K. (2004). Effects of dipole orientations on nonlinear optical properties of oxo-bridged dinitroaniline systems. The Journal of Physical Chemistry A, 108(2), 320-325.
[50] Shunmugam, R., & Sathyanarayana, D. N. (1984). Raman and polarized infrared spectra of pyridine-2-thione. Spectrochimica Acta Part A: Molecular Spectroscopy, 40(8), 757-761.
[51] Mukherjee, V., Singh, N. P., & Yadav, R. A. (2011). Optimized geometry and vibrational spectra and NBO analysis of solid state 2, 4, 6-tri-fluorobenzoic acid hydrogen bonded dimer. Journal of Molecular Structure, 988(1-3), 24-34.
[52] Hamilton, H. W., Ortwine, D. F., Worth, D. F., & Bristol, J. A. (1987). Synthesis and structure-activity relationships of pyrazolo [4, 3-d] pyrimidin-7-ones as adenosine receptor antagonists. Journal of medicinal chemistry, 30(1), 91-96.
[53] Squarcialupi, L., Colotta, V., Catarzi, D., Varano, F., Filacchioni, G., Varani, K., ... & Di Cesare Mannelli, L. (2013). 2-Arylpyrazolo [4, 3-d] pyrimidin-7-amino derivatives as new potent and selective human A3 adenosine receptor antagonists. Molecular modeling studies and pharmacological evaluation. Journal of medicinal chemistry, 56(6), 2256-2269.
[54] Massey, V., Komai, H., Palmer, G., & Elion, G. B. (1970). On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo [3, 4-d] pyrimidines. Journal of Biological Chemistry, 245(11), 2837-2844.
[55] Falchi, F., Manetti, F., Carraro, F., Naldini, A., Maga, G., Crespan, E., ... & Botta, M. (2009). 3D QSAR Models Built on Structure‐Based Alignments of Abl Tyrosine Kinase Inhibitors. ChemMedChem: Chemistry Enabling Drug Discovery, 4(6), 976-987.
[56] Alkorta, I., & Elguero, J. (2017). The structure of N-arylindazoles and their aza-derivatives in the solid state: A systematic analysis of the Cambridge Structural Database coupled with DFT calculations. Journal of Molecular Structure, 1137, 186-192.
[57] Ali, H. I., Fujita, T., Akaho, E., & Nagamatsu, T. (2010). A comparative study of AutoDock and PMF scoring performances, and SAR of 2-substituted pyrazolotriazolopyrimidines and 4-substituted pyrazolopyrimidines as potent xanthine oxidase inhibitors. Journal of computer-aided molecular design, 24(1), 57-75.
[58] Avasthi, K., Rawat, D. S., Maulik, P. R., Sarkhel, S., Broder, C. K., & Howard, J. A. (2001). 1H NMR and X-ray crystallographic analysis of 1, 2-bis (4, 6-diethylthio-1H-pyrazolo [3, 4-d] pyrimidin-1-yl) ethane and its ‘propylene linker’-analog: molecular recognition versus crystal engineering. Tetrahedron Letters, 42(40), 7115-7117.
[59] Avasthi, K., Aswal, S., Kumar, R., Yadav, U., Rawat, D. S., & Maulik, P. R. (2005). Fine tuning of folded conformation by change of substituents: 1H NMR and crystallographic evidence for folded conformation due to arene interactions in pyrazolo [3, 4-d] pyrimidine core based ‘propylene linker’compounds. Journal of molecular structure, 750(1-3), 179-185.
[60] Maulik, P. R., Avasthi, K., Biswas, G., Biswas, S., Rawat, D. S., Sarkhel, S., ... & Bhakuni, D. S. (1998). A stacked pyrazolo [3, 4-d] pyrimidine-based flexible molecule. Acta Crystallographica Section C: Crystal Structure Communications, 54(2), 275-277.
[61] Avasthi, K., Aswal, S., & Maulik, P. R. (2001). A stacked pyrazolo [3, 4-d] pyrimidine-based flexible molecule: the effect on stacking of an ethyl group in comparison with a methyl group. Acta Crystallographica Section C: Crystal Structure Communications, 57(11), 1324-1325.
[62] Avasthi, K., Tewari, A., Rawat, D. S., Sharon, A., & Maulik, P. R. (2002). A stacked pyrazolo [3, 4-d] pyrimidine-based flexible molecule: the effect of a bulky benzyl group on intermolecular stacking in comparison with methyl and ethyl groups. Acta Crystallographica Section C: Crystal Structure Communications, 58(8), o494-o495.
[63] Avasthi, K., Farooq, S. M., Aswal, S., Raghunandan, R., & Maulik, P. R. (2007). 1H NMR and crystallographic evidence for tolerance of bulky electron withdrawing methanesulfonyl group on robustness of the U-motif in pyrazolo [3, 4-d] pyrimidine core based ‘Leonard linker’compounds and formation of plus (+) motif. Journal of molecular structure, 827(1-3), 88-94.
[64] Avasthi, K., Bhagat, D., Bal, C., Sharon, A., Yadav, U., & Maulik, P. R. (2003). Unusual molecular conformation in dissymmetric propylene-linker compounds containing pyrazolo [3, 4-d] pyrimidine and phthalimide moieties. Acta Crystallographica Section C: Crystal Structure Communications, 59(8), o409-o412.
[65] Avasthi, K., Rawat, D. S., Sarkhel, S., & Maulik, P. R. (2002). A dimeric layered structure of a 4-oxo-4, 5-dihydro-1H-pyrazolo [3, 4-d] pyrimidine compound. Acta Crystallographica Section C: Crystal Structure Communications, 58(6), o325-o327.
[66] Yadava, U., Singh, M., & Roychoudhury, M. (2011). Gas-phase conformational and intramolecular π–π interaction studies on some pyrazolo [3, 4-d] pyrimidine derivatives. Computational and Theoretical Chemistry, 977(1-3), 134-139.
[67] Laarej, K., Bouachrine, M., Radi, S., Kertit, S., & Hammouti, B. (2010). Quantum chemical studies on the inhibiting effect of bipyrazoles on steel corrosion in HCl. Journal of Chemistry, 7(2), 419-424.
[68] Chtita, S., Larif, M., Ghamali, M., Adad, A., Rachid, H., Bouachrine, M., & Lakhlifi, T. (2013). Studies of two different cancer cell lines activities (MDAMB-231 and SK-N-SH) of imidazo [1, 2-a] pyrazine derivatives by combining DFT and QSAR results. Studies, 2(11).
[69] Elidrissi, B., Ousaa, A., Ghamali, M., Chtita, S., Ajana, M. A., Bouachrine, M., & Lakhlifi, T. (2014). Journal of Computational Methods in Molecular Design, 2014, 4 (4): 140-149. Journal of Computational Methods in Molecular Design, 4(4), 140-149.
[70] Krishnakumar, V., Prabavathi, N., & Muthunatesan, S. (2008). Structure and vibrational frequencies of 1-naphthaldehyde based on density functional theory calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(2), 528-533.
[71] El-Mansy, M. A. M., & El-Nahass, M. M. (2014). On the spectroscopic analyses of Perylene-66. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 568-573.
[72] Shukla, B. K., Yadava, U., & Roychoudhury, M. (2015). Theoretical explorations on the molecular structure and IR frequencies of 3-phenyl-1-tosyl-1H-pyrazolo [3, 4-d] pyrimidin-4-amine in view of experimental results. Journal of Molecular Liquids, 212, 325-330.
[73] Kasula, M., Samunuri, R., Chakravarty, H., Bal, C., Baba, M., Jha, A. K., & Sharon, A. (2016). Regioselective Synthesis of Pyrazolo [3, 4-D] Pyrimidine Based Carbocyclic Nucleosides as Possible Antiviral Agent. Nucleosides, Nucleotides and Nucleic Acids, 35(1), 43-52.
[74] Khan, S. A. (2017). Green synthesis, spectrofluorometric characterization and antibacterial activity of heterocyclic compound from chalcone on the basis of in vitro and quantum chemistry calculation. Journal of fluorescence, 27(3), 929-937.
[75] Asiri, A. M., & Khan, S. A. (2012). Synthesis, characterization, and in vitro antibacterial activities of macromolecules derived from bis‐chalcone. Journal of Heterocyclic Chemistry, 49(6), 1434-1438.
[76] Lauria, A., Abbate, I., Patella, C., Gambino, N., Silvestri, A., Barone, G., & Almerico, A. M. (2008). Pyrazolo [3, 4-d][1, 2, 3] triazolo [1, 5-a] pyrimidine: a new ring system through Dimroth rearrangement. Tetrahedron Letters, 49(35), 5125-5128.
[77] Zaki, Y. H., Sayed, A. R., & Elroby, S. A. (2016). Regioselectivity of 1, 3-dipolar cycloadditions and antimicrobial activity of isoxazoline, pyrrolo [3, 4-d] isoxazole-4, 6-diones, pyrazolo [3, 4-d] pyridazines and pyrazolo [1, 5-a] pyrimidines. Chemistry Central Journal, 10(1), 17.
[78] Al-Sehemi, A. G., Irfan, A., & Fouda, A. M. (2013). Synthesis, characterization and density functional theory investigations of the electronic, photophysical and charge transfer properties of donor–bridge–acceptor triaminopyrazolo [1, 5-a] pyrimidine dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 111, 223-229.
[79] Koleva, G., Galabov, B., Wu, J. I., Schaefer III, H. F., & Schleyer, P. V. R. (2009). Electrophile affinity: a reactivity measure for aromatic substitution. Journal of the American Chemical Society, 131(41), 14722-14727.
[80] Bedford, R. B., Durrant, S. J., & Montgomery, M. (2015). Catalyst‐Switchable Regiocontrol in the Direct Arylation of Remote C H Groups in Pyrazolo [1, 5‐a] pyrimidines. Angewandte Chemie International Edition, 54(30), 8787-8790.
[81] Ebead, Y. H. (2012). Spectrophotometric investigations and computational calculations of prototropic tautomerism and acid–base properties of some new azo dyes. Dyes and Pigments, 92(1), 705-713.
[82] Hihara, T., Okada, Y., & Morita, Z. (2003). Reactivity of phenylazonaphthol sulfonates, their estimation by semiempirical molecular orbital PM5 method, and the relation between their reactivity and azo-hydrazone tautomerism. Dyes and Pigments, 59(3), 201-222.
[83] Hammam, A. M., Rageh, N. M., & Ibrahim, S. A. (1997). Solvatochromic studies on 2-[(2-hydroxypheny) azo]-4-5-diphenylimidazole. dyes and Pigments, 35(3), 289-296.
[84] Karcı, F., Şener, N., Yamaç, M., Şener, İ., & Demirçalı, A. (2009). The synthesis, antimicrobial activity and absorption characteristics of some novel heterocyclic disazo dyes. Dyes and Pigments, 80(1), 47-52.
[85] Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 38(6), 3098.
[86] Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of chemical physics, 98(2), 1372-1377.
[87] Issa, R. M., Sadek, H., & Ezzat, I. I. (1971). Spectrophotometric studies on dihydric phenols. Zeitschrift für Physikalische Chemie, 74(1_2), 17-25.
[88] Issa, R. M., Hammam, A. S., & Etaiw, S. H. (1972). The Electronic Absorption Spectra of Some 2, 3-Benzcarbazoloquinones. Zeitschrift für Physikalische Chemie, 251(1), 177-182.
[89] Zahedifar, M., & Sheibani, H. (2014). Unexpected Products from Mesoionic 1, 3-Thiazinium and Oxazinium Olates: A Novel Access to 3, 5-Diaryl-1, 3-thiazine-2, 4, 6-trione and Alkoxy-3, 5-diphenyl-3H-1, 3-oxazine-2, 6-dione Derivatives. Australian Journal of Chemistry, 67(9), 1201-1204.
[90] Zahedifar, M., & Sheibani, H. (2016). Reaction of α-oxoketenes with 2-substituted benzothiazoles and benzimidazoles: synthesis of benzo [4, 5] thiazolo [3, 2-a] pyridinone and N-(1, 3-benzothiazol-2-yl)-3-oxopropanamide derivatives. Chemistry of Heterocyclic Compounds, 52(1), 41-44.
[91] Sheibani, H., & Zahedifar, M. (2009). The condensation of (chlorocarbonyl) phenylketene with 1, 3-dinucleophiles (2) Preparation of 2-hydroxy-3-phenyl-4H-pyrimido [2, 1-b][1, 3] benzothiazol-4-ones and thioxo dihydro-4, 6 (1H, 5H)-pyrimidinones. Heterocycles, 78(4), 1015-1022.
[92] Zahedifar, M., Razavi, R., & Sheibani, H. (2016). Reaction of (chloro carbonyl) phenyl ketene with 5-amino pyrazolones: Synthesis, characterization and theoretical studies of 7-hydroxy-6-phenyl-3-(phenyldiazenyl) pyrazolo [1, 5-a] pyrimidine-2, 5 (1H, 4H)-dione derivatives. Journal of Molecular Structure, 1125, 730-735.
[93] Wazzan, N. A., & Mahgoub, F. M. (2014). DFT calculations for corrosion inhibition of ferrous alloys by pyrazolopyrimidine derivatives. Open Journal of Physical Chemistry, 4(01), 6.