Document Type: Review Article

Authors

1 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Department of Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Abstract

The catalytic conversion of naphtha is a refinery process in which heavy naphtha feeds through the catalytic bed of several reactors at high temperatures and pressures that potentially increase the aromatics content of naphtha and its octane number. Usually, naphtha feed is used to remove the impurities that prevent useful reactions and cause poisoning of reformer catalysts. Operating abutments for the catalytic converter unit are temperature, pressure, metallurgical agent, hydrogen to hydrocarbon ratio, and chlorine ratio. In this study, Operational Conditions in Octanizer and Hydro-treating Units in oil refinery companies is investigated and optimized the conditions of catalysis.

Graphical Abstract

Keywords

Main Subjects

[1] Samimi, A., Zarinabadi, S., Kotanaei, S., Hossein, A., Azimi, A., & Mirzaei, M. (2019). Use of data mining in the corrosion classification of pipelines in catalytic reforming units (CRU). Iranian Chemical Communication, 681-691.

[2] Stanley, G.  (2006). A Biographical Memoir of  Veladimir Haensel, 3rd ed., The National Academy of Sciences,  Washington DC, Vol. 88

[3] Samimi, A. Zarinabadi, S. Shahbazi, A. Azimi, A. Mirzaei, M. (2020). Journal of Medicinal and Chemical Sciences, 3, 79-94.

[4] Moghadasi, Z. (2019). Journal of Medicinal and Chemical Sciences,  2(1), 35-37.

[5] Cho, W., Song, T., Mitsos, A., McKinnon, J. T., Ko, G. H., Tolsma, J. E., ... & Park, T. (2009). Optimal design and operation of a natural gas tri-reforming reactor for DME synthesis. Catalysis Today139(4), 261-267.

[6] Sajjadifar, S., Pal, K., Jabbari, H., Pouralimardan, O., Divsar, F., Mohammadi-Aghdam, S., ... & Hamidi, H. (2019). Characterization of Catalyst: Comparison of BrØnsted and Lewis Acidic Power in Boron Sulfonic Acid as a Heterogeneous Catalyst in Green Synthesis of Quinoxaline Derivatives. Chemical Methodologies3(2. pp. 145-275), 226-236.

[7] Bobtana, F., Elabbar, F., & Bader, N. Evaluation of Halocnemum Strobilaceum and Hammada Scoparia Plants Performance for Contaminated Soil Phytoremediation. (2019). Journal of Medicinal and Chemical Sciences, 2(4), 126-129.

[8] Alkherraz, A. M. Ali, A. Elsherif, K. K. M. (2020), Journal of Medicinal and Chemical Sciences, 3(1), 1-10

[9] Nirmala, G. S., & Muruganandam, L. (2019). Hydrodynamics in a Liquid Solid Circulating Fluidized Bed–A Review. Journal of Chemical Reviews1(2. pp. 78-170), 114-129.

[10] MArsAro, M. F., & CAVAlCAnte, C. A. V. (2017). Random preventive maintenance policy based on inspection for a multicomponent system using simulation. Eksploatacja i Niezawodność19(4).

[11] Amini, I., Pal, K., Esmaeilpoor, S., & Abdelkarim, A. (2018). Prediction of two-dimensional gas chromatography time-of-flight mass spectrometry retention times of 160 pesticides and 25 environmental organic pollutants in grape by multivariate chemometrics methods. Advanced Journal of Chemistry-Section A1(1, pp. 1-65), 12-31.

[12] Aurelien, M. D. DouetteScott, Q. Turn Wuyin WangVheissu I. Keffer, (2007)“Experimental Investigation of Hydrogen Production from Glycerin Reforming,”Energy Fuels, 21(63), 499-3504.

[13] Taskar, U., & Riggs, J. B. (1997). Modeling and optimization of a semiregenerative catalytic naphtha reformer. AIChE Journal43(3), 740-753.

[14] Mohamed Abd., El-Kodous Mohamed., Abd El-Kodous., Gharieb Gharieb., El-Sayyad., Gharieb El-Sayyad., Ahmed el-batal., Ahmed el-batal., (2019).  Preparation and characterization of new recyclable visible-light responsive nanocomposite for photocatalysis applications, Journal of Materials Science Materials in Electronics, 30(3), 1-17.

[15] Liao, Z., Wang, J., Yang, Y., & Rong, G. (2010). Integrating purifiers in refinery hydrogen networks: a retrofit case study. Journal of Cleaner Production18(3), 233-241.

[16] Sa'idi, M., Mostoufi, N., & Sotudeh-Gharebagh, R. (2011). Modeling and simulation of continuous catalytic regeneration (CCR) process. International Journal of Applied Engineering Research2(1), 115..

[17] Liang, K. M., Guo, H. Y., & Pan, S. W. (2005). A study on naphtha catalytic reforming reactor simulation and analysis. Journal of Zhejiang University. Science. B6(6), 590.

[18] Ciapetta, F. G., Wallace, D. N. (1971). Catalytic Naphtha Reforming, Marcel Dekker Inc. , Maryland, Vol. 5, p. 61-158.

[19] Smith, R. B. (1959). Kinetic analysis of naphtha reforming with platinum catalyst. Chem. Eng. Prog55(6), 76-80.

[20] Gyngazova, M. S., Kravtsov, A. V., Ivanchina, E. D., Korolenko, M. V., & Uvarkina, D. D. (2010). Kinetic model of the catalytic reforming of gasolines in moving-bed reactors. Catalysis in industry2(4), 374-380.

[21] Kvartsov, A. V., Ivanchina, E. D., D'yakonova, L. V., & Averin, S. N. (2001). Computer prediction of catalytic reforming of naphtha cuts. Chemistry and technology of fuels and oils37(6), 393-400.

[22] Mnushkina, O. I., Kas’yanov, A. A., & Samoilov, N. A. (2006). Optimization of the reforming process scheme. Chemistry and technology of fuels and oils42(3), 176-182.

[23] Weifeng, H., Hongye, S., Yongyou, H., & Jian, C. H. U. (2006). Modeling, simulation and optimization of a whole industrial catalytic naphtha reforming process on Aspen Plus platform. Chinese Journal of Chemical Engineering14(5), 584-591.

[24] HOU Weifeng, SU Hongye, MU Shengjing, CHU Jian, 2007, Multi objective optimization of the industrial naphtha catalytic reforming process, Chinese Journal of Chemical Engineering, Vol. 15, Issue 1, p. 75 - 80.

[25] Ancheyta-Juárez, J., & Villafuerte-Macías, E. (2000). Kinetic modeling of naphtha catalytic reforming reactions. Energy & Fuels14(5), 1032-1037.

[26] Antos, G. J., Aitani, A. M., & Parera, J. M. (1995). Catalytic naphtha reforming: science and technology. Marcel Dekker Inc.

[27] Raseev, S. (2003). Thermal and catalytic processes in petroleum refining. CRC Press.

[28] Marin, G. B., & Froment, G. F. (1989). The development and use of rate equations for catalytic refinery processes. In Studies in Surface Science and Catalysis (Vol. 53, pp. 497-511). Elsevier.

[29] Gueddar, T., & Dua, V. (2011). Disaggregation–aggregation based model reduction for refinery-wide optimization. Computers & chemical engineering35(9), 1838-1856.

[30] Gyngazova, M. S., Chekantsev, N. V., Korolenko, M. V., Ivanchina, E. D., & Kravtsov, A. V. (2012). Optimizing the catalyst circulation ratio in a reformer with a moving bed via a combination of real and computational experiments. Catalysis in Industry4(4), 284-291.

[31] Iranshahi, D., Karimi, M., Amiri, S., Jafari, M., Rafiei, R., & Rahimpour, M. R. (2014). Modeling of naphtha reforming unit applying detailed description of kinetic in continuous catalytic regeneration process. Chemical Engineering Research and Design92(9), 1704-1727.

[32] Stijepovic, M. Z., Vojvodic-Ostojic, A., Milenkovic, I., & Linke, P. (2009). Development of a kinetic model for catalytic reforming of naphtha and parameter estimation using industrial plant data. Energy & Fuels23(2), 979-983.

[33] Arani, H. M., Shirvani, M., Safdarian, K., & Dorostkar, E. (2009). Lumping procedure for a kinetic model of catalytic naphtha reforming. Brazilian Journal of Chemical Engineering26(4), 723-732.

[34] Palmer, E. R., Kao, S. H., Ung, C., & Shipman, D. R. (2008). Consider options to lower benzene levels in gasoline. Hydrocarbon Processing87(6), 55-55.