Document Type : Short Review Article
Author
Department of Chemistry, Government General Degree College, Singur, Hooghly, West Bengal, Pin:712409, India
Abstract
Reactive oxygen and nitrogen species, generated in usual biochemical reactions with increased exposure to the environment can cause an imbalance in homeostatic process between oxidants and antioxidants leading to oxidative stress. Oxidative stress is primarily responsible for a wide array of human diseases such as neurodegenerative disorders (Alzheimer’s disease, Parkinson’s disease), diabetes, cancers, and rheumatoid arthritis. Therefore, a subtle balance between oxidation and antioxidation is an essential requirement in order to maintain a healthy biological system. Antioxidants, widely distributed among plants and animals are substances which can significantly prevent or inhibit the oxidative damage to cells. COVID-19 is a major threat to the entire world and the need to boost one’s immunity is crucial. This can be achieved by consuming antioxidants. Thus, this article attempts to delineate different types of antioxidants, their sources in Mother Nature, the need of antioxidants to maintain good health and their mode of action along with mechanisms.
Graphical Abstract
Keywords
[1] Halliwell, B. (2007). Biochemistry of oxidative stres, 35, 1147-1150.
[2] Sies, H. (1997). Oxidative stress: oxidants, antioxidants. Exp Physiol. 82, 291-295.
[3] Krishnaiah, D., Sarbatly, R., & Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food and bioproducts processing, 89(3), 217-233.
[4] Kasote, D. M., Hegde, M. V., & Katyare, S. S. (2013). Mitochondrial dysfunction in psychiatric and neurological diseases: cause (s), consequence (s), and implications of antioxidant therapy. Biofactors, 39(4), 392-406.
[5] Badarinath, A. V., Rao, K. M., Chetty, C. M. S., Ramkanth, S. T. V. S. R., Rajan, T. V. S., & Gnanaprakash, K. (2010). A review on in-vitro antioxidant methods: comparisions, correlations and considerations. International Journal of PharmTech Research, 2(2), 1276-1285..
[6] Møller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol., 58, 459-481.
[7] Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875.
[8] Is, Y., & Woodside, J. V. (2001). Antioxidant in health and disease. J Clin Pathol, 54(3), 176-186.
[9] Kim, Y. W., & Byzova, T. V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, The Journal of the American Society of Hematology, 123(5), 625-631.
[10] Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4(8), 118–126.
[11] Mortensen, A., & Skibsted, L. H. (1997). Importance of carotenoid structure in radical-scavenging reactions. Journal of Agricultural and Food Chemistry, 45(8), 2970-2977.
[12] Davinelli, S., Nielsen, M. E., & Scapagnini, G. (2018). Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients, 10(4), 522-533.
[13] Shalaby, E. A., & Shanab, S. M. (2013). Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian Journal of Geo-Marine Sciences, 42(5), 556-564.
[14] Padayatty, S. J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J. H., ... & Levine, M. (2003). Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American college of Nutrition, 22(1), 18-35.
[15] Nose, K. (2000). Role of reactive oxygen species in the regulation of physiological functions. Biological and pharmaceutical bulletin, 23(8), 897-903.
[16] Sena, L. A., & Chandel, N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. Molecular cell, 48(2), 158-167.
[17] Rigotti, A. (2007). Absorption, transport, and tissue delivery of vitamin E. Molecular aspects of medicine, 28(5-6), 423-436.
[18] Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. Rsc Advances, 5(35), 27986-28006.
[19] Hursel, R., Janssens, P. L., Bouwman, F. G., Mariman, E. C., & Westerterp-Plantenga, M. S. (2014). The role of catechol-O-methyl transferase Val (108/158) Met polymorphism (rs4680) in the effect of green tea on resting energy expenditure and fat oxidation: a pilot study. PLoS One, 9(9), e106220.
[20] Aruoma, O. I. (Ed.). (1993). Free radicals in tropical diseases. Taylor & Francis. Harwood Academic Publishers.
[21] Aruoma, O. I. (1996). Characterization of drugs as antioxidant prophylactics. Free Radical Biology and Medicine, 20(5), 675-705.
[22] Salman, K. A., & Ashraf, S. (2013). Reactive oxygen species: A link between chronic inflammation and cancer. Asia-Pacific J. Mol. Biol. Biotechnol, 21, 41-49.
[23] Bagchi, K., & Puri, S. (1998). Free radicals and antioxidants in health and disease: a review. EMHJ-Eastern Mediterranean Health Journal, 4 (2), 350-360.
[24] Pal, D., Banerjee, S., & Ghosh, A. K. (2012). Dietary-induced cancer prevention: An expanding research arena of emerging diet related to healthcare system. Journal of advanced pharmaceutical technology & research, 3(1), 16-24.
[25] Drew, B., & Leeuwenburgh, C. (2002). Aging and the role of reactive nitrogen species. Annals of the New York Academy of Sciences, 959(1), 66-81.
[26] Moncanda, S., Palmer, R.M.J., Higgs, E.A. (1991) Nitric Oxide: Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev, 43, 109–142.
[27] Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical society reviews, 39(11), 4067-4079.
[28] Dizdaroglu, M., Jaruga, P., Birincioglu, M., & Rodriguez, H. (2002). Free radical-induced damage to DNA: mechanisms and measurement. Free Radical Biology and Medicine, 32(11), 1102-1115.
[29] Halliwell, B., Gutteridge, J.M.C. (2007). Free radicals in biology and medicine. Oxford University Press, Oxford, 4th edn.
[30] Brigelius-Flohé, R. (1999). Tissue-specific functions of individual glutathione peroxidases. Free Radical Biology and Medicine, 27(9-10), 951-965.
[31] Li, Y. (2011). Antioxidants in biology and medicine: essentials, advances, and clinical applications. Nova Science Publishers.
[32] Vojdani, A., Bazargan, M., Vojdani, E., & Wright, J. (2000). New evidence for antioxidant properties of vitamin C. Cancer Detection and Prevention, 24(6), 508-523.
[33] Niki, E. (1991). Action of ascorbic acid as a scavenger of active and stable oxygen radicals. The American journal of clinical nutrition, 54(6), 1119S-1124S.
[34] Retsky, K. L., Freeman, M. W., & Frei, B. (1993). Ascorbic acid oxidation product (s) protect human low density lipoprotein against atherogenic modification. Anti-rather than prooxidant activity of vitamin C in the presence of transition metal ions. Journal of Biological Chemistry, 268(2), 1304-1309.
[35] Monaghan, B. R., & Schmitt, F. O. (1932). The effects of carotene and of vitamin A on the oxidation of linoleic acid. Journal of Biological Chemistry, 96, 387-395.
[36] Parker, R. S. (1996). Absorption, metabolism, and transport of carotenoids. The FASEB Journal, 10(5), 542-551.
[37] Livrea, M. A., Tesoriere, L., Bongiorno, A., Pintaudi, A. M., Ciaccio, M., & Riccio, A. (1995). Contribution of vitamin A to the oxidation resistance of human low density lipoproteins. Free Radical Biology and Medicine, 18(3), 401-409.
[38] Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of natural products, 63(7), 1035-1042.
[39] De Souza, R. F., & De Giovani, W. F. (2004). Antioxidant properties of complexes of flavonoids with metal ions. Redox Report, 9(2), 97-104.
[40] Torreggiani, A., Tamba, M., Trinchero, A., & Bonora, S. (2005). Copper (II)–Quercetin complexes in aqueous solutions: spectroscopic and kinetic properties. Journal of Molecular Structure, 744, 759-766.
[41] Duthie, S. J., Johnson, W., & Dobson, V. L. (1997). The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 390(1-2), 141-151.
[42] Krishnamachari, V., Levine, L. H., & Paré, P. W. (2002). Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging. Journal of Agricultural and Food Chemistry, 50(15), 4357-4363.
[43] Heinonen, I. M., Meyer, A. S., & Frankel, E. N. (1998). Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. Journal of Agricultural and Food Chemistry, 46(10), 4107-4112.
[44] M. Hugel, H., & Jackson, N. (2012). Redox chemistry of green tea polyphenols: therapeutic benefits in neurodegenerative diseases. Mini Reviews in Medicinal Chemistry, 12(5), 380-387.
[45] Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular aspects of medicine, 24(6), 345-351.
[46] Sies, H., & Stahl, W. (1995). Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. The American journal of clinical nutrition, 62(6), 1315S-1321S.
[47] Stahl, W., & Sies, H. (2001). Protection against solar radiation—protective properties of antioxidants. In Comprehensive series in photosciences (Vol. 3, pp. 561-572). Elsevier.
[48] Mueller, L., & Boehm, V. (2011). Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules, 16(2), 1055-1069.
[49] Young, A. J., & Lowe, G. M. (2001). Antioxidant and prooxidant properties of carotenoids. Archives of Biochemistry and biophysics, 385(1), 20-27.
[50] Young, A. J., Lowe, G. L. (2018). Carotenoids—Antioxidant Properties, Antioxidants (Basel). 7(28), 1-4.
[51] Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. In The molecular targets and therapeutic uses of curcumin in health and disease (pp. 105-125). Springer, Boston, MA.
[52] Wright, J. S. (2002). Predicting the antioxidant activity of curcumin and curcuminoids. Journal of molecular structure: theochem, 591(1-3), 207-217..
[53] Salem, M., Rohani, S., & Gillies, E. R. (2014). Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC advances, 4(21), 10815-10829.
[54] Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: a review of its’ effects on human health. Foods, 6(10), 92.
[55] Weschawalit, S., Thongthip, S., Phutrakool, P., & Asawanonda, P. (2017). Glutathione and its antiaging and antimelanogenic effects. Clinical, Cosmetic and Investigational Dermatology, 10, 147–153.
[56] Sedlak, T. W., Paul, B. D., Parker, G. M., Hester, L. D., Snowman, A. M., Taniguchi, Y., ... & Sawa, A. (2019). The glutathione cycle shapes synaptic glutamate activity. Proceedings of the National Academy of Sciences, 116(7), 2701-2706.
[57] Banerjee, S., Ecavade, A., & Rao, A. R. (1993). Modulatory influence of sandalwood oil on mouse hepatic glutathione S-transferase activity and acid soluble sulphydryl level. Cancer letters, 68(2-3), 105-109..
[58] Shahidi, F., & Zhong, Y. (2010). Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology, 112(9), 930-940.