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A B S T R A C T 

Superabsorbent hydrogels are hydrophilic polymer units that can absorb 
water and organic fluids into the three-dimensional network and mimic 
biological cells when swollen. Hydrogels are categorized as natural, 
synthetic, and hybrid, depending on their constituent polymer. The novel 
green synthesis includes the combination of natural polymers with 
synthetic ones to produce eco-friendly Hydrogels. The networks are 
established using crosslinkers formed chemically as covalent bonds or 
ionic bonds and physically if intermolecular forces are involved. Starch 
and cellulose are naturally occurring biopolymers that make significant 
applications for hydrogel production. This article reviews hydrogel, its 
properties, classification, synthesis mechanism, and application in 
various sectors using starch and cellulose as copolymers. Due to the high 
range of availability, nontoxic nature, and biodegradability, starch and 
cellulose-based hydrogels find high regard in the present research era. 
The biopolymers beneficiation can result in the evolution of economic 
and sustainable methods for transforming this natural biopolymer into 
utilitarian organic products. 
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1. Introduction 

ydrogels are 3-D structural materials 
that can intake large amounts of 
water including biological fluids and 
do not dissolve due to their physical 
or chemical entanglement in the 

network [1, 2]. The water absorption capacity 

of hydrogel is due to the presence of its 
functional groups such as -NH2, -CONH2, -COOH, 
and so on [3]. The hydrophilic polymer units of 
the hydrogel can absorb water from an 
arbitrary weight of 10% to a thousand times its 
dry weight. If the water is composed of more 
than 95% of the total weight, the hydrogels are 
known as superabsorbent [4, 5]. 
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Figure 1. Structure of starch molecule 

Many hydrogels are synthesized with the 
intention of specific applications like 
transdermal drug delivery, wound dressing, 
and contact lenses, in the soil for water 
absorption, and retention, and for the 
controlled release of fertilizers [2]. The most 
commonly used synthesis method is light-
induced photopolymerization which requires a 
photoinitiator which is a light-sensitive 
molecule that upon irradiation with UV, visible 
or IR can produce active species. The 
crosslinker and the functional group binding to 
the polymer can create temporal and special 
control over reactions [6]. 

The chloroplast of a leaf contains starch, which 
is the most common polysaccharide storage in 
plants and appears as granules. A typical term 
for the starch found in seeds, legumes, and 

tubers is amyloplast. In its unprocessed state, 
starch is a tasteless, white powder. A high 
number of glucose units make up the structure 
of starch, which is joined together by glycoside 
bonds [7]. 

As illustrated in the Figure 1 two key structural 
elements of starch are amylose and 
amylopectin. Amylose is linear or just slightly 
branched, while amylopectin is heavily 
branched. 30% of the mass of starch granules is 
thought to be crystalline, and 70% is thought to 
be amorphous. The majority of amylose and a 
sizeable portion of amylopectin are found in the 
amorphous regions. The crystalline area 
predominantly comprises amylopectin. The 
amount of amylase present and gelatinization 
temperature are the two key process variables 
influencing gel formation [8]. The advantages of 
using starch are its availability, low cost, 
renewable, biocompatibility biodegradability, 
and nontoxicity [9]. Starch's intermolecular 
bonds are broken during the gelation process 
when water and heat are present. A more rigid 
structure can be created by alkaline 
gelatinization than by heating-induced 
gelatinization in the hydrogel. By boosting the 
starch's attraction for water, the hydroxyl 
groups of the glucose units in the starch 
structure get ionized at high pH [10]. 

As the primary component of plants and natural 
fibers like cotton and linen, cellulose is a 
naturally occurring glucose polymer. Some 
bacteria, like Acetobacter xylinum, can also 
produce cellulose [11]. Cellulose is composed of 
a d-glucose unit and a C4-OH group at one end, 
which is the non-reducing end. The terminating 
group is a C1-OH group, which is the reducing 
end with an aldehyde structure (Figure 2) [12]. 

 

Figure 2. Structure of cellulose 
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Even in extreme thermal settings, cellulose has 
strong resistance to the UV radiation. In 
particular, cellulose and its derivatives are 
widely sought after for the food industry, 
medicine, agriculture, green energy production, 
and textile uses due to their mechanical 
strength, biocompatibility, and environmental 
sustainability [13]. 

The incorporation of biopolymers like starch 
and cellulose improves the biodegradable 
performance of the hydrogel. In natural 
conditions, most biopolymer hydrogels are 
converted into CO2, H2O, and biomass under the 
enzymatic action of the microbes [14]. Water 
treatment methods that are both affordable and 
environmentally friendly use starch derivative 
adsorbents (SDAs) to remove or adsorb 
aqueous heavy metal ions (AHMIs) from water 
[15]. The biocatalyst amylase enzyme is utilized 
to break down the starch amylopectin. Kirchoff 
investigated the amylolytic action of starch-
degrading enzyme in 1811, and amylose was 
shown to be a particular enzyme for this 
activity [16]. The Ag NPs loading in hydrogel 
networks increases the anti-bacterial activity 
[17]. 

 This report reviews the benefits of using starch 
and cellulose-based hydrogel in various 

applications. Since these biopolymers are large 
sources of polysaccharides, their sustainable 
conversion can cause the production of high-
value materials and the development of cost-
effective technologies for converting waste into 
the useful products. The classification, swelling 
mechanisms, and synthesis techniques of 
hydrogels are further reviewed. 

2. Classification of Hydrogel 

Based on the source, hydrogels are categorized 
as natural and synthetic hydrogels [1]. 
Hydrogels are grouped into homopolymer-
polymer, multipolymer, or interpenetrating 
polymers depending on their polymer 
constituents. Homopolymers are derived from 
the same type of monomers, and co-polymers 
constitute two or more types of monomers with 
one hydrophilic moiety. Interpenetrating 
polymers are a salient class of hydrogels that 
are made of two self-reliable crosslinked 
synthetic or natural polymer units [18]. 

Another method to classify hydrogels is 
depending upon the cross-linkage established 
either by physical or chemical hydrogels. 
Chemical hydrogels are again grouped on the 
basis of covalent bonds within the matrix [19]. 
A covalent bond determines the degree of water 
absorption capacity of hydrogel which in turn  

Figure 3. Classification of hydrogel
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depends on the hydrophilic nature of polymer 
and the range of reticulation taking place in the 
matrix. Physical hydrogels are formed from 
molecular entanglements, physical interaction, 
ionic bonding, or hydrogen bonding, and these 
hydrogels are also known as temporal 
hydrogels due to their reversible nature. 
Hydrogels are categorized based on the charge 
as cationic, anionic, and neutral [20]. The 
reversibility can occur due to the application of 
some forces or environmental changes such as 
pH, temperature, pressure, and electric and 
magnetic fields [2]. Depending on the 
configuration and physical appearance 
hydrogels are classified as crystalline, 
semicrystalline, and amorphous structures [21]. 
Hydrogels are further classified based on their 
intelligence to respond to environmental 
stimuli such as pH, light, temperature, electric 
fields, pressure, magnetic field, solvent 
composition, and sound (Figure 3) [18]. 

3. Swelling Mechanism of Hydrogel 

Swelling is the most important feature of 
hydrogel technology. The hydrogel effect on 
various applications is studied through swelling 
and deswelling test [22]. When a hydrogel is 
placed in the water, the water molecules which 
enter initially hydrate the most hydrophilic 
groups, resulting in “primary bound water.” As 
the hydrophilic groups are hydrated, the 
polymer enlarges by swelling and exhibits out 
the hydrophobic groups with water molecules, 
forming hydrophobically bound water which is 
called “secondary bound water.” Primary and 
secondary bound water are combined and  
 

 

Figure 4. Swelling mechanism of hydrogel 

called “total bound water.” Once the 
hydrophobic and hydrophilic ends are 
entangled with water, the network imbibes 
additional water due to the osmotic forces. The 
additional swelling water after the polar, 
hydrophobic, and ionic groups are saturated 
with bound water is called “bulk water” or “free 
water” that can fill the space between the 
polymeric network chains and the center of 
large pores and voids (Figure 4) [23, 24]. 

4. Synthesis Mechanism of Hydrogel 

The mechanism used to carry out crosslinking 
and polymerization determines the hydrogel 
synthesis process [25]. The network inside the 
matrix and the presence of bonding within the 
polymer chains cause cross-linking, which 
inhibits the dissolution of polymer units prior 
to practical use [26]. As a result, changes in the 
physiochemical characteristics of the hydrogels 
are centered on how crosslinked and crystalline 
they are. The flow and deformation of the 
polymer, the glass transition temperature, and 
the increase in crosslinked points are some of 
the alterations [27]. Other changes include a 
decrease in elasticity, viscosity, and solubility. 
The covalent or secondary connecting points of 
many chains are referred to as crosslinks [28]. 
It can be a junction formed by crystallites or 
subsequent interactions, or it might be a 
covalent link-a tiny chemical connection 
between carbon atoms. The presence of 
crosslinks in a hydrogel's structure is strongly 
correlated with its integrity [29]. Thus, the 
crosslinking network of different hydrogels is 
used to distinguish them. Crosslinking can be 
done physically or chemically to create 
hydrogels. 

4.1 Physical crosslinking 

The polymers containing polar functional 
groups like hydroxyl, acylamino, and carboxyl 
groups, crosslinking via hydrogen bonding is 
conceivable [30]. Hydrogen bonding can 
happen with other polymers containing 
electron-deficient hydrogen atoms when 
carboxyl groups protonate [31]. Physical 
linking takes place through the coacervation 
process which contains a coacervation phase 
and an equilibrium phase [32]. The
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Figure 5. Physical crosslinking 

 Coacervation phase contains a high amount of 
collides, whereas the equilibrium phase 
contains very little amount of collides [33]. A 
simple coacervation involves a single polymer, 
but there should be at least two oppositely 
charged polyelectrolytes for complex 
coacervation [34]. Hydrogels can be further 
formed through heating or cooling. This is 
possible, especially with polymers that have 
helices, helix-like formations, and junction 
zones present in their structure [35, 36]. 
Carrageenan-gelatin hydrogels are prepared by 
mixing hot stock solutions of each precursor at 
40 °C in different weight ratios [37]. The 
crystallites in a polymer chain can act as 
physical crosslink sites in the network, leading 
to the formation of a hydrogel [29]. Generally, 
Physical cross-linking is the process by which 
weak physical interactions create a binding 
between polymer chains in the solvent 
condition (Figure 5). Coordination bonds, 
hydrogen bonds, ionic contacts, and Van der 
Waals interactions are some of these 
interactions. 

4.2 Chemical crosslinking 

4.2.1 Free radical polymerization 

A chain-growth polymerization process called 
free radical polymerization (FRP) uses 
initiators to produce free radicals by either 
homolytic dissociation or redox reaction 
(Figure 6) [38]. In free-radical polymerizations, 
the active site at the chain end is renewed when 
a monomer molecule is added to an active chain 
end. Monomers' carbon-carbon double bonds 
are typically where free radicals can initiate 
chain propagation. The chain then breaks when 
the radicals that are propagating react by 
combining, distorting, and transferring. With 
this, the FRP method is the most popular 
chemical crosslinking method for making 
hydrogels. 

4.2.2. Photopolymerization 

The in situ creation of crosslinked networks is 
made possible by photopolymerization [39]. It 
offers a special method for quickly and 
precisely manufacturing gels [40]. This method  

 

 

 

Figure 6. Free radical polymerization 
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Figure 7. Photopolymerization 

involves the use of UV-Visible light to interact 
with light-sensitive substances, known as 
photoinitiators, and FRP to transform a liquid 
monomer or macromer into a hydrogel (Figure 
7). The mechanism for photoinitiation depends 
on the photolysis processes: photo-cleavage, 
hydrogen abstraction, and cationic 
photopolymerization. 

4.2.3 Crosslinking induced by enzymatic 
reactions 

Enzymatic reactions allow the formation of 
strong covalent bond and rapid gelation in less 
time under physiological conditions (Figure 8) 
[29]. This reaction takes place under normal 
temperatures. Apart from fast gelation, 
enzymatic crosslinking gives adjustable 
mechanical properties and controllable 
degradation copolymerization [39]. 

4.2.4 Crosslinking by click chemistry 

Barry Sharpless came up with the term "click 
chemistry," which refers to a class of reactions 

that are quick, adaptable, purifiable, and have 
high product yields [41]. The procedure was 
developed to resemble the spontaneous aldol 
condensation of raw materials. The C-C bonds 
in the backbones of natural goods often serve as 
a link [42]. For its synthetic reproduction, a 
strong thermodynamic driving force is needed. 
This issue is addressed by click reactions, which 
pair a C atom with plentiful heteroatom X found 
in polysaccharides. As a result, to link proteins, 
nucleic acids, and/or polysaccharides, a C-X-C 
bridge is created as opposed to a C-C bond. The 
hydrogel crosslinking based on click chemistry 
includes the following: Diels–Alder, Schiff base, 
oxime, Michael-type addition, and boronate 
ester [43]. 

Starch and imide can react using click 
chemistry, which is a class of reactions that are 
highly efficient, selective, and often occur under 
mild conditions (Figure 9). One example of a 
click reaction that can be used to modify starch 
with imide is the copper-catalyzed azide-alkyne 
cycloaddition (CuAAC) reaction [44]. 

 

 

 

 

Figure 8. Enzymatic crosslinking 

 

 

 

 

Figure 9. Click reaction
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4.2.5. Grafting 

Graft polymerization is an adaptable method 
for incorporating desired functional groups into 
the polymer backbone, creating a new hydrogel 
with specific properties (Figure 10) [45]. 
Grafting is the process of creating active sites 
by removing hydrogen atoms from the polymer 
backbone. To create a graft copolymer, this 
creates macroradicals to which desirable 
monomers can attach [46, 47]. The molecular 
makeup, length, and quantity of the side chains 
determine the characteristics of the graft 
copolymers that form [48]. Grafting can be 
accomplished by enzymatic, chemical, 
radiation, photochemical, and chemical 
techniques. 

 

Figure 10. Graft polymerization 

5. Significance of Starch and Cellulose 
Hydrogels 

Synthetic polymers exhibit certain exceptional 
mechanical, physical, and chemical properties, 
due to which they are frequently employed to 
create the hydrogels that are currently sold on 
the market [49]. In spite of their wide 
application, they are difficult to biodegrade, 
non-renewable, and unsustainable in terms of 
production. For these reasons, scientists are 
paying increased attention to hydrogels made 
from naturally occurring polysaccharides like 
starch and cellulose [50, 51]. 

Plants are a rich source of starch 
polysaccharides, and the chloroplast in green 
leaves and the amyloplast in the tubers and 
seeds are particularly rich in granular starch. 
The main production source of commercial 
starch are potatoes, wheat, corn, and rice [52, 
53]. Starch is converted into gelatin primarily 
through three stages of hydration and 

plasticization. Granules of hydrophilic starch 
absorb water and expand in the initial stage. 
When the starch is dissolved in water and turns 
into gelatin in the next step, the granule 
structure is destroyed. The development of the 
starch hydrogel network by chilling and aging 
and the reorganization of polysaccharide 
structure make up the last phase. This phase is 
also known as the retrogradation phase [54, 
55]. There are many chemical techniques that 
can be used to create starch-based hydrogels, 
including starch grafting and etherification. The 
-OH groups from the starch molecule are 
replaced in etherified starches with various 
ether groups, such as carboxymethyl starch. In 
contrast, the grafted starch approach creates 
hydrogels by attaching various vinyl monomers 
to starch [56, 57]. 

Though it is highly eco-friendly to use starch, 
the low surface area, the requirement for 
chemical derivatization to increase the sorption 
capacity, and the necessity for low durability, 
among other shortcomings, are some 
downsides of starch-based hydrogels. The 
carbon-carbon backbone of starch was used to 
give vinyl polymers a biodegradable structure. 
The usage of starch results in an increase in 
overall surface area, which makes 
microorganisms more likely to attack [58]. The 
biodegradability increased significantly by this 
method, although it was not entirely 
environmentally benign. To mix with starch, 
aliphatic polyesters, polyvinyl alcohol (PVA), 
and biopolymers are frequently used. The 
primary goal of this blending is to increase 
biodegradability, while retaining cost-
effectiveness and other qualities. Polylactic 
acid, or PLA, is a good polymer in terms of 
biodegradability and is extensively used in the 
biomedical industry. High strength, modulus, 
and biocompatibility are some of PLA's best 
qualities [59]. 

Amylase is an enzyme that catalyzes the 
breakdown of starch into smaller molecules 
such as maltose and glucose. When amylase is 
added to a starch hydrogel, it will initiate the 
process of starch digestion (Figure 11). When 
hydrogen peroxide is applied to the surface of a 
starch hydrogel, the reaction may primarily 
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Figure 11. Enzyme catalyzed reactions in starch hydrogel 

occur at the interface between two substances. 
This may result in the formation of bubbles of 
carbon dioxide gas on the hydrogel surface, 
which can cause it to expand and become more 
porous. 

The extensive availability of cellulose (as a 
natural biomaterial) in the form of live 
terrestrial biomass suited for various industrial 
uses is one of the numerous practical benefits of 
using it in hydrogel compositions [60]. Each 
hydro-glucopyranose unit in cellulose 
molecules contains three alcoholic hydroxyl 
groups, allowing for feasible chemical changes 
to be made to these hydroxyl groups. There are 
30-36 cellulose chains linked laterally through 
hydrogen bonding in crystalline regions, where 
a single cellulose chain often traverses across 
both crystalline and amorphous regions. 
Methylcellulose (MC) [61], hydroxyethyl 
cellulose (HEC) [62], hydroxypropyl cellulose 
(HPC) [63], hydroxypropyl methylcellulose 
(HPMC) [64], and carboxymethyl cellulose 
sodium (CMC Na) [65] are a few cellulose 
derivatives that have been produced to create 
hydrogels. These derivatives are understood to 
be cellulose derivatives that are water-soluble. 

 

 

Figure 12. Cellulose composite 

An efficient and environmentally beneficial 
coating material for slow-release mono 
ammonium phosphate fertilizer (MAP) is a 
biodegradable all-cellulose composite hydrogel. 
The sodium carboxymethyl 
cellulose/hydroxyethyl cellulose mixture used 
to create the biodegradable formulation was 
filled with 5% of spherical regenerated 
cellulose particles (Figure 12) [66]. 

Methylcellulose has a special property of 
forming a thermal reversible upon heating and 
considers a polymer with a lower critical 
solution temperature [67]. Citric acid is a 
natural crosslinker. An increase in the 
crosslinking degree may cause an increase of 
crosslinking points which prevents the 
expansion in aquatic environment. The less use 
of citric acid (5%) would reduce the affinity of 
coating of water and oxygen used for food 
preservation and to preserve nutrients 
susceptible to oxidation [68]. When the HEC 
degree increases, the solubility level in water 
will increase. HPMC is a water-soluble polymer 
that is available in several grades with different 
viscosities and substitution rates. The 
microporous and chemical structure of 
crosslinked HPC resin produces hydrogels with 
high adsorption capacity of anions. Among the 
five cellular derivatives, CMC Na remains the 
favorite raw material for producing hydrogel. 

6. Structural Properties of Starch and 
Cellulose Hydrogels 

As illustrated in Table 1 starch and cellulose 
hydrogels are both widely used in various 
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applications due to their unique functional 
properties. Starch hydrogels have excellent 
water absorption capacity due to their high 
hydrophilicity. This property makes them 
suitable for use as absorbent materials in 
hygiene products and wound dressings. Starch 
hydrogels can form a gel when exposed to heat, 
acid, or enzymatic action. This characteristic 
makes them useful in food processing and as 
drug delivery systems. Starch hydrogels can 
adhere to various surfaces due to their sticky 
nature. Cellulose hydrogels have excellent 
mechanical strength and are highly 
biocompatible causing zero toxic effects. 
Cellulose hydrogels are transparent, which 
makes them suitable for use in contact lenses 
and optical devices. Both cellulose and starch 
are naturally abundant biopolymers that are 
feasible for various applications due to their 
eco-friendly properties. These properties vary 
due to their structural makeup and natural 
inbuilt system. 

Starch-based and cellulose-based hydrogels 
have their own limitations, and the best choice 
will depend on the specific requirements of 
application. It is important to consider their 
advantages, disadvantages, and their potential 
impact on the hydrogel performance before 
choosing the most appropriate type of hydrogel 
for a given application. 

7. Applications of Starch and Cellulose Based 
Hydrogels 

7.1. Agricultural applications 

Agriculture is the most important industry 
which adequately relays on the quantity of 
water and nutrients. Hydrogels are used in 
agriculture due to their significant advantage 
such as: (I) the usage of less amount water for 
irrigation, (II) the controlled release of 
fertilizers, and (III) enhancing plant growth and 
reducing environmental pollution [77]. They 
can be used for water storage and fertilizer 
retention and prevents the fertilizer from early 
leaching and surface runoff. Starch-based 
hydrogels can enhance bacterial growth and 
control weeds and harmful microorganisms 
[78]. Ultimately controlled fertilizer usage is a 
great use of hydrogel in the farmlands. The SH 
prepared from starch and poly (methacrylic 
acid), adding initiator (ammonium persulphate) 
and crosslinker (N, N-methylene-bis-
acrylamide) was used for the slow release of 
thiram fungicide [79]. SH co-polymers of acrylic 
acid and acrylamide were used as the 
membrane of urea for controlled release [80]. 
Abd El-Mohdy et al. prepared starch hydrogel 
for the slow release of thiophanate methyl, 
fluometuron, and trifluralin. The main global 
issues we face today are water scarcity and  

 

Table 1. Comparative study between starch and cellulose hydrogel 

S. No. Type of Hydrogel Hydrophilicity Biodegradation Mechanical 
Strength 

References 

1 
Starch based -

Hydrogel 

Starch hydrogels have 
a good water-

absorbing capacity 
and are suitable for 

wound healing. 

Starch-based 
hydrogels are 

biodegradable and 
non-toxic making 

them environmentally 
friendly. 

Starch hydrogels 
have low 

mechanical strength 
and are easily 

ruptured. 

[69],[70], 
[71],[72] 

2 
Cellulose based-

hydrogel 

Cellulose hydrogels 
are mostly 

hydrophobic. 

Cellulose hydrogels 
are biodegradable, 

but the rate of 
degradation is slow. 

Cellulose hydrogels 
have excellent 

mechanical strength 
and stability, 
making them 

suitable to use as 
scaffolds in tissue 

engineering. 

[73],[74], 
[75], [76] 
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Figure 13. Swelling mechanism of hydrogel in the soil 

environmental pollution which can be solved to 
a certain extent using hydrogel [81]. The 
hydrogel system is penetrated by osmosis when 
the polymers come into contact with water, and 
as a result, hydrogen atoms react and emerge as 
positive ions. Along the polymer chain's entire 
length, this reaction leaves behind a number of 
negative ions. These repelling negative charges 
cause the polymer chain to unwind and open 
up. They also attract water molecules and use 
hydrogen bonds to bind them (Figure 13) [82]. 

The creation of environmentally safe and 
sustainable slow-release fertilizers is a 
desirable use for cellulose-based products. The 
cellulose structure's adaptability and 
functionalization make it a suitable scaffold for 
the creation of high-tech agricultural goods 
[83]. The ability to encapsulate herbicides into 
the structure of cellulose-based superabsorbent 
hydrogels allows for effective control over the 
herbicides release, which has significant 
economic and sustainability consequences for 
the agriculture industry. It is one of the most 
effective methods of weed and insect control in 
agriculture to prevent any negative 
environmental effects [84]. 

7.2. Biomedical applications 

The use of hydrogel in drug delivery devices is 
the most important application and they are 
already in the use. The primary goal of 
developing a drug carrier system is to deliver 
the site-specific medication to the body as 
effectively and with as few side effects as 
possible [85]. Due to the fact the drug 
molecules in these sorts of site-specific 
medications do not come, in contact with other 
body tissues and organs, they exhibit increased 
efficacy and have several distinct and adaptable 
physical properties that make it particularly 
helpful to use them in a medication delivery 
system [86]. Because SHs have a porous 
surface, they have a strong attraction to liquid 
environments and are swelled. The crosslinking 
density can be changed to vary the porosity of 
Hydrogel. Porosity is a crucial characteristic 
since it enables drug molecules lost into 
hydrogels quickly and easily and aids in the 
drug’s release in the particular system [87]. 
Reis et al. explored starch-based hydrogels 
(starch-M hydrogels) with glycidyl 
methacrylate for the treatment of colon 
disorders including Crohn’s disease. The acid-  

 

Figure 14. Cellulose nanofibrils 
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responsive medication corticoids were 
preserved and transported with outstanding 
behavior by this hydrogel. The studies suggest 
that hydrogels can be used in drug delivery due 
to their selective permeability [88]. The 
nanocellulose carboxymethylation involves the 
introduction of carboxymethyl groups onto the 
surface of nano-cellulose fibres (Figure 14). 

This modification alters the chemical and 
physical properties of nanocellulose, making it 
more soluble in water and giving it an improved 
surface charge. CMNC has a number of potential 
applications, including in the development of 
new materials, such as biodegradable films, 
coatings, and composites. It can be further used 
as a rheology modifier, thickener, or stabilizer 
in various industries, including food, cosmetics, 
and pharmaceuticals. 

Due to their exceptional qualities and 
ecologically friendly characteristics, 
nitrocellulose-based hydrogels, such as those 
made of cellulose nanocrystals (CNC), cellulose 
nanofibrils (CNF), and bacterial cellulose (BC), 
have a number of advantages as drug carriers. 
Nanocellulose greatly enhances the hydrogel 
characteristics and adjusts drug-releasing 
profile in nanocellulose hydrogels, which have 
been shown to sustainably deliver diverse types 
of pharmaceuticals via multiple routes of 
administration [89]. With the use of ultrasound 
in biomedicine, sonochemistry provides a quick 
and environmentally friendly method of 
material synthesis. The small acoustic bubbles 
that the sound wave creates as it travels around 
the room include an amazing facility where 
matter interacts with other matter at energies 
as high as 13 eV to cause spectacular chemical 
reactions. In addition to increase the 
effectiveness of cellulose extraction from raw 
materials, ultrasonication has an impact on the 
hydrogels creation [90]. 

7.3. Food industry 

The fruits and vegetables are getting rotted due 
to the evaporation of water and the 
decomposition of components, also due to the 
breathing of fruits and vegetables even after 
harvesting. Alternative methods of preserving 
the fruits for a long time include freezing, low-

temperature storage, and CA storage (low 
oxygen and high carbon dioxide) which stops 
breathing and prevents evaporation of water 
and degradation [91]. The packing practice at a 
low specific low temperature reduces the 
preservation cost. Water evaporation is 
prevented and the CA effect is obtained by its 
preservation in a sealed condition. To manage 
the CO2 and O2 content, and the humidity for 
preserving fruits and vegetables like carrots 
and spinach, T suji et al. coated a low-density 
polyethylene film with a starch-graft-acrylic 
acid as a water-absorbing layer and used 
urethane as a binder [92]. 

The starch antibacterial film is a type of edible 
film that can be applied to the surface of fruits 
to protect them from contamination by bacteria 
and other microorganisms (Figure 15). The 
film is typically made from a mixture of starch 
and other ingredients, such as plasticizers, 
antimicrobial agents, and other additives. 
Antibacterial films are biodegradable and can 
be consumed along with the fruit, reducing 
waste and environmental impact. Likewise, 
they can help to maintain the natural 
appearance and texture of the fruit, which can 
be important for marketing and consumer 
acceptance. 

Cellulose-based hydrogels can be utilized in 
packaged goods including meats, fresh fruits, 
vegetables, and other high-water-content foods 
as an active packaging material and as humidity 
controllers [93]. According to a different study, 
lactic and acetic acids are safe cleaning 
chemicals used in the meat business. However, 
due to their low cost and simple management, 
solid antimicrobial agents are constantly in 
demand, particularly in the food business.  

 

 

Figure 15. Starch antibacterial film 
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Porous antimicrobial hydrogels are created 
when cellulose and its derivatives are 
crosslinked enzymatically with organic acids 
(lactic and acetic acids). AgNPs, ZnO, and CuO 
nanoparticle-containing CBH films showed 
more antibacterial efficacy against E. coli than L. 
monocytogenes. Fresh potatoes can have their 
shelf life extended using the CBH film [94]. 

In the food processing sector, nutritional 
quality and food protection are of the utmost 
importance. Food quality monitoring can be 
done quickly, affordably, and non-destructively 
using hydrogel-based biosensor. A functional 
hydrogel consisting of D-glucose pentaacetate, 
silver ions, and agarose is used to assess the 
formation of biogenic amines (BAs), which 
signal the freshness of fish. When compared to 
the other previously described BAs sensors, this 
hydrogel-based biosensor avoids the pre-
synthesis of fluorescence probe, making it more 
practical and affordable for evaluating the 
freshness of fish [95]. The hydrogel is also 
employed to evaluate the toxicity and bacterial 
toxicity [96]. The accessible hydroxyl groups on 
the CNC surface, which allow for a high degree 
of surface-bound fluorophores, may be used by 
CNC-based hydrogels for the detection of pH 
changes in meals [97]. In addition, the 
cholesterol oxidase/CA/carbon 
nanotubes/biosensor designed for cholesterol 
detection demonstrated improved performance 
and excellent sensitivity with a detection limit 
of 108 M [98]. Promising hydrogel solutions in 
the food packaging sector include enhanced 
barrier qualities (gas and moisture), 
antimicrobial packaging, active and intelligent 
packaging, nanoparticle additions, shelf-life 
augmentation, oxidation prevention, and flavor 
masking [99]. Due to a higher rate of 
respiration during storage, fresh potatoes are 
wrapped in plastic containers to prevent 
fogging, which is the buildup of water on the 
containers’ surfaces. Both of these effects-the 
potato becoming green and the effect-is avoided 
by the integrated hydrogel packaging 
technique. Furthermore, the ferulic acid-
incorporated antioxidant components in CBH 
films stopped the oxidation of lipids in butter 
[100]. 

The primary obstacle of starch hydrogel is 
retrogradation in the presence of water. This 
problem can be solved by preparing 
thermoplastic starch with various plasticizers 
[101]. Starch films can be created using various 
procedures, such as term processing or casting 
techniques [102]. Starch/clay nanocomposite-
based biodegradable food packaging materials 
were created by Avella et al. [103]. The packing 
displayed good mechanical qualities (modulus 
and tensile strength). Starch films are made 
using a variety of starches, including modified, 
soluble, and pre-gelatinized starches. Starch 
films have a number of benefits, including being 
transparent, odorless, biodegradable, non-toxic, 
and having low oxygen permeability at low 
humidity [104]. Omega fatty acid-rich oils, such 
as those found in plants and fish, are known to 
be chemically unstable and prone to oxidation 
and deterioration. Encapsulation with starch or 
starch composite is a widely used technique to 
minimize fatty acid oxidation and the 
disagreeable flavour of oxidation products 
[105]. Systems based on starch can be further 
used to extend the shelf life of food goods. For 
instance, lyophilized microspheres with an 
average particle size of 1.01 m were created 
utilizing fresh tiger nut milk as the core 
material and a combination of inulin and tiger 
nut starch that has undergone OSA modification 
[106]. Lei et al. [107] successfully generated 
olive oil-loaded porous particles by plating and 
compared the oxidation stabilities of free and 
encapsulated olive oils using porous purple 
sweet potato starch created through enzymatic 
modification. Due to their effective film-forming 
abilities, acetylated maize starch and 
maltodextrin could enclose heat-sensitive 
anthocyanins during a spray-drying procedure. 

8. Conclusion 

The greatest reserves, most extensively 
dispersed, and most readily degradable 
substances in nature are cellulose and starch. 
Therefore, the advancement of green chemistry 
is significantly impacted by the creation of 
functional cellulose and starch materials. 
Hydrophilicity and high biocompatibility are 
two functional traits of cellulose and starch that 
make them suitable carriers for various 
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industries. The features, preparation 
techniques, classification, properties, and uses 
of hydrogel in many domains are covered in 
detail along with a summary of the research so 
far on cellulose and starch-based hydrogel 
materials. In light of the aforementioned 
research, it is determined that cellulose and 
starch hydrogels exhibit the following key 
benefits when used as carriers. First, the 
cellulose hydrogels' three-dimensional network 
raises the specific surface area, which 
significantly enhances the adsorption 
performance. Second, cellulose's negative ions 
and a sizable amount of hydroxyl groups can 
boost the material's capability for adhesion as 
well as its stability and swelling. 

Even though the study of hydrogels made of 
cellulose and starch is currently ongoing, 
significant problems remain (1). Radiation pre-
treatment offers the advantages of being 
environmentally friendly and highly effective, 
but comparatively, little research has been done 
on this technique (2). Whether or not the bio-
application will have an impact on a hydrogel 
carrier's mechanical strength, more study is 
required (3). The majority of hydrogel 
applications are concentrated in the 
environmental sector, with very few 
established in the energy sector. There has not 
been any investigation of medical practices like 
photodynamic therapy. Future studies can thus 
concentrate on this issue and perfectly enhance 
its biocompatibility to permit its use in the 
medical industry. 
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