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Abstract 
With the new structural changes of power system that has emerged in recent years, which makes 

manufacturing units transmit more and more electrical power from the transmission lines. It is expected that a 

wider voltage collapse in the power systems will happen. In this research study, a new PID-based control 

method was used, providing a PCC-voltage feedback control to increase the reactive power from the wind-

turbine equipped with a doubly-fed induction generator (DFIG) at high voltage drop. The proposed method is 

an improved control scheme for the voltage collapse, by which a part of the wind energy, causing a network 

failure that is temporarily stored in the rotor energy and the remained energy is kept until DC voltage and 

rotor current are in the hazardous parts. The purpose of the rotor side controller is to independently determine 

the stator active and reactive the power, which the control of the reactive power using the rotor side converter 

can cause the stator voltage to remain constant in the desired range. The accuracy and performance of the 

proposed method were confirmed by simulating a typical power system, in the MATLAB/SIMULINK 

environment. 
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Introduction 

With the development of the environmental concerns 

and energy saving strategies in exploiting renewable 

energy sources, wind power usage has been increasing 

in many countries all over the world as compared to 

other energy sources. The use of wind turbine 

technologies is a good choice compared to other 

renewable energy sources since it does not require 

water, no environment pollution is engaged, no fuel is 

needed. It also creates a sustainable energy system [1-

3]. In the last two decades, the wind energy 

conversion technologies have undergone a lot of 

change. The development and growth of wind energy 

have begun with the low-cost energy acquisition with 

high efficacy and high reliability, gaining better power 

and better network connectivity and public acceptance 

[4-7]. In the wind turbine system, the generator 

converts the rotational power of the wind turbine into 

electricity. In wind system, the generator plays an 

important role and different generators have various 

performances in interacting with the network. Today, 

three types of wind turbines (Squirrel Cage Induction 

Generators, Doubly-fed induction generator, and 

direct-driven synchronous generator) are commonly 

used around the world [8-11]. In DFIGs, a voltage 

converter is used to feed the rotor wiring. The stator 

wiring is connected to the network and rotor wiring of 

the voltage converter and the other side of the voltage 

converter is connected to the network. This converter 

separates the frequency of the electric network and the 

mechanical frequency of the rotor. As a result, it 

allows the wind turbines to operate at different speeds. 

This converter has a control loop that allows the wind 

turbines to be controlled continuously [12-15]. 

According to [16] and [17], the purpose of stability in 

the power system is to maintain a balance between the 

power production and consumption during normal 

conditions, as well as the return to an acceptable 

equilibrium point in the post-turbulence conditions. In 

this regard, power system stability, according to the 

system response is categorized as the rotor angle 

stability, frequency stability, and voltage stability [18-

21]. Wind turbines are not synchronously connected 

to the power grid and therefore do not participate in 

oscillating electromechanical mode. 

On the other hand, these devices also do not apply a 

new oscillating mode to the power system because 

their generator technology is ineffective in the power 

system oscillations [22-25]. In this work, an improved 

control scheme of voltage collapse was provided to 

temporarily store a part of the wind energy that causes 

a network failure and the remained energy is 

maintained until DC voltage and rotor current are in 

the hazardous part [26-28]. In addition, the results of 

the comparison of the performance of the model and 

the control system were explored in the short-circuit 

fault mode in the network.  

 

Controlling a System Equipped with DFIG 

DFIG control involves controlling the rotor side and 

grid side converters. The purpose of independently 

controlling the rotor side is to regulate the active and 

reactive powers of the stator [29-31].  

Active power control using the rotor side converter 

can cause the stator voltage to remain stable within 

the desired range when the DFIG feeds into a weak 

power network that is without local reactive power 

compensator. In the stator flux reference apparatus, 

the relation between translator and dp-axis voltages, 

currents and fluxes are as follows, by placing the d-

axis in the direction of the stator flux we have: 
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(4  )    

                                                                                      

qrds

mis

m
e i

LL

LP
T 




22

3
 

Because the inductance matrix is not in the diagonal 

stator flux reference, any change in voltage 

components d or q causes a change in both 

components of the current [32-35]. 

To solve the problem, the equations must be 

compensated for the corresponding values (Vdr). First, 

we define a parameter called the induction motor 

friction coefficient: 
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The stator flux angle is calculated from the following 

equation: 

(10  ) 
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where the λ𝑎𝑠 and 𝑉𝛽𝑠 ,as well as ias and 𝑖𝛽𝑠 are 

obtained using the Clarke transformation as follows 

[36-38]: 
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Power electronic converters are divided into two 

major categories: Voltage source converters (VSCs) 

and current source converters (CSC). In this work, 

VSCs are investigated; high efficiency, low cost, and 

appropriate physical dimensions are among its 

features. Their main function is to convert the DC 

voltage to AC voltage with the given voltage range 

and frequency. Therefore, the output parameters of the 

converter can be adjusted with the control strategy and 

the proper modulation for the inverter switches. 

Voltage source converters that are connected to the 

power network are called network-connected 

converters [39-41]. 

 

Suggested Control Strategy 

When a fault occurs in the main power network, the 

common coupling point voltage will drop. In these 

conditions, we will see undesired transient states in 

the rotor and stator’s structures. The voltage drop in 

the common bus prevents the proper transfer of active 

power from the wind turbine to the network [42-45].  

This will result in severe DC voltage oscillations. In 

the asymmetric error condition, the negative-sequence 

currents of the stator will appear as a magnetic motive 

force (MMF) in the stator space and clockwise 

direction. These MMFs produce a magnetic flux in the 

clockwise direction and in the stator and rotor’s 

spaces. These fluxes will incite electric propulsion 

with frequency 𝜔𝑠 (2-S) in the rotor circuit [46-48]. 

Therefore, the induced component in the rotor circuit 

has the frequency Fs(2-S). With more severe fault on 

the stator side, the current harmonics in the rotor 

circuit are increased and thus we will observe the 

harmonic components in the mechanical torque. In the 

symmetric error condition, the stator voltage will be 

suffered a sudden drop. The relationship between the 

stator voltage and the stator charge is based on the 

Faraday’s law. For each phase will have the following 

relation. 
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In the above relations, j can be a, b, and c phases. The 

electric propulsion caused by the stator flux will drop 

sharply. This sharp drop is presented as a shock 

waveform. Therefore, the stator flux will have a DC 

component [49-51].  

This DC value will be lost due to the circuit’s 

resistance. The DC flux component that is seen by the 

rotor has a frequency fm. The transient DC component 

in the leakage flux of the electric propulsion force will 

be induced in the rotor circuit. Therefore, when an 

error is presented in the network, the rotor current will 

be high and can damage the power converter [52-55].  

 Hence, it is necessary to design a proper control 

strategy for this situation. The control of the rotor’s 
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flow to quench the asymmetric component trace of the 

negative sequence in the stator current as well as DC 

components will be the symmetric errors.  These two 

components will result in the excessive increase in 

rotor currents and can cause significant damage to the 

converters during the operation. The typical RSC 

control loops along with the proposed system are 

shown in Figure 1. 

 

 
Figure 1. The RSC control loops 

 

In Figure 1, the active output power of the stator or 

the electromagnetic torque is related to the rotor 

current in the a-axis and the reactive output power of 

the stator or the terminal voltage is related to the rotor 

current in the d-axis. The conventional PID controllers 

are applied in the external loops to regulate active and 

reactive power and in the internal circuits to regulate 

the flow of the rotor. In the proposed control strategy, 

the dq reference frame rotational speed is assumed to 

be equal to the synchronous speed [56].  

This assumption is also available in steady state. 

However, during the stator voltage transient modes, 

the stator flux rotational speed varies with the vector 

of the spatial voltage.  

Therefore, ω is not necessarily equal to the 

synchronous speed. Given the drop in the network 

power and its transient states, the model of the DFIG 

transient state is different, and consequently the 

control strategy will be different. In the DFIG control 

plane of rotor side, which uses PID and dual flow 

regulators, one is used for the positive sequence 

component and the other for the negative sequence 

component. It should be noted that up to several low 

pass filters will be required to detect the DC 

component corresponding to the negative sequence, 

positive sequence, and components associated with 

the stator charge. Of course, the use of filters will 

result in a delay in the system. Therefore, the system 

will not be completely decoupled, which will worsen 

the dynamic response and stability of the system. 

 

 
Figure 2. Control of the rotor side converter 

 

Figure 2 compared to the control strategy of Figure 1, 

the controller gain will be larger. However, the 

bandwidth of the circuit will be expended by setting 

the value ofω𝑐. Therefore, it will reduce the 

sensitivity of the system to the network faults and 

slow frequency changes. These controllers, which are 

the function of the PID controller performances for 

the setting reference values, are applied in the 

reference frame of 𝛽𝛽. It is obvious that in the 

stationary reference frame of 𝛽𝛽, the components of 

the rotor currents in DFIG will be ac components with 

the frequency  𝜔s′ − ωs. The DC components of the 

stator flux are also observed as a DC component.  

The resonant controller, which has been set in ω𝑠 is 

likely to adjust the positive and negative sequence 

flows in 𝜔𝑠′ − 𝜔𝑠. It is even possible to provide a 

steady state error. Therefore, the discussed controlled 

strategy will properly control the components of the 

negative and positive sequence without filtering 

needs.  

 

Examining and Evaluating the Simulated System 

The simulated system in this study is demonstrated in 

Figure 3. 

 
Figure 3. The simulated system. 

 

In the turbines connected to the network, the turbine 

always tries to work at any speed at its maximum 

power. Therefore, it is appropriate that the power 

curve in these turbines always be at the maximum 

possible extent and also be similar to the speed-power 

curve. In these curves, the output power per hour of 

wind is determined with a single rotor speed. Based 

on these curves, which indicate the optimal energy 

production path to the nominal (nameplate) 

production, the turbine must produce a given power 

for a given velocity so that if the production rate 

differs from the value of the given reference of the 
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speed-power curve, the necessary commands will be 

issued quickly to change the speed of the rotor.  

This can be one of the benefits of the double-feed 

turbines. Figure 4 illustrates the general schema of a 

DFIG turbine. The applied AC/DC/AC converter in 

Figure 3 consists of two parts of the network side 

converter and the rotor side converter that are shown 

respectively with CROTOR and CGRID, and these two are 

designed to control rotor current and voltage in order 

to separate the network from the rotor. 

   

 
Figure 4. The system consists of a DFIG 

 

The disturbances entered into the system for the 

change of the reference power of the stator power at 

t=20s is ∆𝑄 = 0.3𝑝𝑢, the mechanical torque rate 

obtained from the wind is ∆𝑇 = −0.5𝑝𝑢 at the time 

t=12.5s and the mechanical velocity changes at time 

t=17s are ∆ω𝑟𝑒𝑓 = 0.3𝑝𝑢.  

Figure 5 shows the active power consumption in the 

Wind-DFIG rotor. It was shown that if the controller 

is not used, the PID will be observed. The amplitude 

of these oscillations increases over time, which 

indicates that the system is unstable. It is clearly 

visible in Figure 6. The Figures 7 and 8 illustrate the 

active power injection by the stator in DFIG and the 

electric torque rate, respectively. The electric torque 

with magnification in the interval t=[15s-30s] is 

shown in Figure 8. It is clear that lack of using the 

proposed controller results in a growth in oscillation 

amplitude of the torque over time. This will result in 

the system instability. The reactive power exchanged 

by the DFIG rotor and DFIG stator are represented in 

Figures 9 and 10, respectively [57-60].  

Figure 11 shows that rotor speed changes. The voltage 

and current components for the stator and the rotor are 

shown in Figures 11 and 16, respectively.     

  

 
Figure 5. The active power consumption in Wind-

DFIG rotor 

 

 
Figure 6. The active power consumption in the Wind-

DFIG rotor at magnification range t= [15s-35s] 

 

 
Figure 7. The active power injection by the stator in 

DFIG 

 
Figure 8. The electrical torque in DFIG 
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Figure 9. The eclectic torque at magnification range  

t = [15s-35s] 

 

 
Figure 10. The reactive power exchange by rotor in 

DFIG 

 

 
Figure 11. The reactive power exchange by stator in 

DFIG 

 

 
Figure 12. The rotor speed in DFIG 

 
Figure 13. The rotor speed in DFIG at magnification 

range t=[0s-15s] 

 

 
Figure 14. The speed rotor in DFIG at magnification 

range t=[15s-25s] 

 

 
Figure 15. The stator current in DFIG 

 

 
Figure 16. The rotor voltage component in DFIG 

 

In the following section, the dynamic response of the 

wind turbine with the dual power generator relative to 

the fault, as well as the effectiveness of the control 

system in restoring the wind turbine after eliminating 

the fault to the normal operation prior to the three-

phase fault occurrence on the generator terminals are 

examined.  

Given that wind turbines are more influential on the 

electric power generation and have a high share in the 

power generation, they should not be disconnected 

from the network when the fault occurs, because the 

power network stability can be threatened by a 

reduction in production. Therefore, the control system 

should be able to manage the system in such a 

situation and when the fault has been resolved, returns 

the wind turbines to its normal state in the shortest 

possible time.  

 

 
Figure 17. The rotor voltage components at 

magnification t=[15s-30s] 
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Figure 18. The Rotor current components 

 

If the purpose is to make the wind turbines work in a 

single power factor, then the reactive power reference 

value will be zero. In this situation, the value of the 

generator terminal voltage will not be equal to a per-

unit, and the turbines will work in the single power 

factor; however, the output voltage is not equal to per-

unite. Moreover, if the goal is to keep the terminal 

voltage constant, then it cannot be expected that the 

reactive power value to be zero. As it is known, 

keeping the voltage constant is at the expense of the 

reactive power consumption.   

 

Conclusion 

In this work, a variable speed wind turbine was 

simulated with a doubly fed induction generator and 

the control system for the wind turbine rotor side 

converter was proposed to obtain the maximum wind 

energy. As the simulation results revealed, the 

introduced control system could control both the 

active and reactive powers. The proposed control 

system is also capable of limiting the wind turbine 

output at high wind speed. The efficacy of the 

suggested model for the wind turbine and its control 

system was explored. As the simulation results 

indicated, the control system used a reactive power 

compensator to prevent the voltage instability. Finally, 

a method of combining the wind turbines in a wind 

power plant was presented in an equivalent wind 

turbine. The proposed model was accurate enough to 

correctly model the behavior of the turbines when 

existing wind turbines receive different wind speeds. 

The simulation results demonstrated that the 

replacement of the wind turbines with the aggregation 

model can model the behavior of the entire wind 

power plant with sufficient accuracy.   
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