Scopus     h-index: 24

Document Type : Short Review Article

Authors

1 Department of Chemistry, G. M. Vedak College of Science, Tala 402 111, University of Mumbai, Maharashtra, India

2 Department of Chemistry, Arts, Science and Commerce College, Surgana, 422211, Savitribai Phule Pune University, Maharashtra, India

3 Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India

4 Department of Chemistry, KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, Savitribai Phule Pune University, Maharashtra 423 101, India

5 Department of Chemistry, S.N. Arts, D.J.M. Comm. and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India

10.33945/SAMI/JCR.2019.3.1

Abstract

Development of reliable and environmentally gracious routes for the fabrication of metal oxide nanoparticles is a crucial step in nano-biotechnology. Among the all zirconia nanoparticles (ZrO2 NPs) draws more attention due to its significant biocompatible, electrical, mechanical, and optical properties. Many natural biomolecules in plant extracts such as alkaloids, amino acids, enzymes, proteins, polysaccharides, polyphenols, steroid, and vitamins could be involved in bioreduction, formation, and stabilization of ZrO2 NPs. In the last decade, numerous efforts were made to develop ecofriendly methods of synthesis to avoid the hazardous byproducts. In this review, green synthesis of ZrO2 NPs, their characterization techniques, and miscellaneous applications were discussed.

Graphical Abstract

A Review on Plant Extract Mediated Green Synthesis of Zirconia Nanoparticles and Their Miscellaneous Applications

Keywords

Main Subjects

[1]        Ghosh Chaudhuri, R., & Paria, S. (2011). Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews, 112(4), 2373-2433.
[2]        Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews, 104(1), 293-346.
[3]        Ghotekar, S. (2019), A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 3(2), 187-200.
[4]        Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research, 7(1), 17-28.
[5]        Aher, Y. B., Jain, G. H., Patil, G. E., Savale, A. R., Ghotekar, S. K., Pore, D. M., Pansambal, S. S.,  & Deshmukh, K. K. (2017). Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against diverse pathogens. International Journal of Molecular and Clinical Microbiology, 7(1), 776-786.
[6] Frewer, L. J., Gupta, N., George, S., Fischer, A. R. H., Giles, E. L., & Coles, D. (2014). Consumer attitudes towards nanotechnologies applied to food production. Trends in food science & technology, 40(2), 211-225.
[7] Kamble, D. R., Bangale, S. V., Ghotekar, S. K., Bamane, S. R. (2018). Efficient synthesis of CeVO4 nanoparticles using combustion route and their antibacterial activity. J. Nanostruct. 8(2), 144-151.
[8] Syedmoradi, L., Daneshpour, M., Alvandipour, M., Gomez, F. A., Hajghassem, H., & Omidfar, K. (2017). Point of care testing: The impact of nanotechnology. Biosensors and Bioelectronics, 87, 373-387.
[9] Ghotekar, S., Pansambal, S., Pagar, K., Pardeshi, O., Oza, R. (2018), Synthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity. Nanochem. Res. 3(2), 189-196.
[10] Savale, A., Ghotekar, S., Pansambal, S., Pardeshi, O. (2017), Green synthesis of fluorescent CdO nanoparticles using Leucaena leucocephala L. extract and their biological activities. J. Bacteriol. Mycol. Open Access. 5(5), 00148.
[11] Ghotekar, S., Savale, A., Pansambal, S. (2018), Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities. J. Water Environ. Nanotechnol. 3(2), 95-105.
[12]      Ghotekar, S. K., Vaidya, P. S., Pande, S. N., Pawar, S. P. (2015), Synthesis of silver nanoparticles by using 3-methyl pyrazol 5-one (chemical reduction method) and its characterizations. Int. J. Multidis. Res. and Deve.  2(5), 419-422.
[13]      Ghotekar, S. K., Pande, S. N., Pansambal, S. S., Sanap, D. S., Mahale, K. M., Sonawane, B. (2015), Biosynthesis of silver nanoparticles using unripe fruit extract of Annona reticulata L. and its characterization. World J. Pharm. and Pharm. Sci. 4(11), 1304-1312.
[14]      Pansambal, S., Deshmukh, K., Savale, A., Ghotekar, S., Pardeshi, O., Jain, G., ... & Pore, D. (2017). Phytosynthesis and biological activities of fluorescent CuO nanoparticles using Acanthospermum hispidum L. extract. Journal of Nanostructures, 7(3), 165-174.
[15]      Bangale, S., & Ghotekar, S. (2019). Bio-fabrication of Silver nanoparticles using Rosa Chinensis L. extract for antibacterial activities. International Journal of Nano Dimension, 10(2), 217-224.
[16]      Pansambal, S., Gavande, S., Ghotekar, S., Oza, R., Deshmukh, K. (2017). Green Synthesis of CuO Nanoparticles using Ziziphus Mauritiana L. Extract and Its Characterizations. Int. J. Sci. Res. in Sci. and Tech., 3, 1388-1392.
[17]      Pansambal, S., Ghotekar, S., Oza, R., Deshmukh, K. (2019), Biosynthesis of CuO nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves and their catalytic performance for the 5-aryl-1,2,4-triazolidine-3- thione derivatives synthesis. Int. J. Sci. Rre. Sci. Tech., 5(4), 122-128.
[18]      Arab, F., Rasouli, N., & Movahedi, M. (2018). Enhanced adsorption of anionic diazo dye by magnetic layered double hydroxide (Zn0. 5Cu0. 5Fe2O4@ SiO2@ Ni-CrLDH) from aqueous solution. Asian Journal of Green Chemistry, 2(1. pp. 1-84), 25-40.
[19]      Mohammadi, B., & Salmani, L. (2018). Synthesis of 3-amino-5-methyl-[1, 1'-biaryl]-2, 4-dicarbonitriles using ZnFe2O4 magnetic nanoparticles. Asian Journal of Green Chemistry, 2(1. pp. 1-84), 51-58.
[20]      Hasani, H., & Irizeh, M. (2018). One-pot synthesis of spirooxindole derivatives catalyzed by ZnFe2O as a magnetic nanoparticles. Asian Journal of Green Chemistry, 3, 85-95.
[21] Sharma, J., Bansal, R., Soni, P., Singh, S., & Halve, A. (2018). One Pot synthesis of 2-substituted benzothiazoles catalyzed by Bi2O3 nanoparticles. Asian Journal of Nanosciences and Materials, 1, 135-142.
[22]      Praveen Kumar, A., Sudhakara, K., Kumar, B. P., Raghavender, A., Ravi, S., Keniec, D. N., & Lee, Y. I. (2018). Synthesis of γ-Fe2O3 Nanoparticles and Catalytic activity of Azide-Alkyne Cycloaddition Reactions. Asian Journal of Nanosciences and Materials, 1(4. pp. 172-293), 172-182.
[23]      Gharbani, P., & Mehalizadeh, A. (2019). Facile Preparation of Novel Zinc Oxide Nano Sheets and Study of Its Optical Properties. Asian Journal of Nanosciences and Materials, 2(1, pp. 1-119.), 27-36.
[24]      John, W. E., Ayi, A. A., Anyama, C., Ashishie, P. B., & Inah, B. E. (2019). On the use of methylimidazolium acetate ionic liquids as solvent and stabilizer in the synthesis of cobalt nanoparticles by chemical reduction method. Advanced Journal of Chemistry-Section A, 2(2, pp. 94-183), 175-183.
[25]      Alizadeh, S., Madrakian, T., & Bahram, M. (2019). Selective and Sensitive Simultaneous Determination of Mercury and Cadmium based on the Aggregation of PHCA Modified-AuNPs in West Azerbaijan Regional Waters. Advanced Journal of Chemistry-Section A, 2(1, pp. 1-93.), 57-72.
[26]      Shinde, H. M., Bhosale, T. T., Gavade, N. L., Babar, S. B., Kamble, R. J., Shirke, B. S., & Garadkar, K. M. (2018). Biosynthesis of ZrO2 nanoparticles from Ficus benghalensis leaf extract for photocatalytic activity. Journal of Materials Science: Materials in Electronics, 29(16), 14055-14064.
[27]      Uddin, I., & Ahmad, A. (2016). Bioinspired eco-friendly synthesis of ZrO2 nanoparticles. JOURNAL OF MATERIALS, 7(9), 3068-3075.
[28]      Zarghani, M., & Akhlaghinia, B. (2016). Green and Efficient Procedure for Suzuki–Miyaura and Mizoroki–Heck Coupling Reactions Using Palladium Catalyst Supported on Phosphine Functionalized ZrO2 NPs (ZrO2@ ECP-Pd) as a New Reusable Nanocatalyst. Bulletin of the Chemical Society of Japan, 89(10), 1192-1200.
[29]      Bansal, P., Bhanjana, G., Prabhakar, N., Dhau, J. S., & Chaudhary, G. R. (2017). Electrochemical sensor based on ZrO2 NPs/Au electrode sensing layer for monitoring hydrazine and catechol in real water samples. Journal of Molecular Liquids, 248, 651-657.
[30]      Moazami, A., & Montazer, M. (2016). A novel multifunctional cotton fabric using ZrO2 NPs/urea/CTAB/MA/SHP: introducing flame retardant, photoactive and antibacterial properties. The Journal of The Textile Institute, 107(10), 1253-1263.
[31]      Mallakpour, S., & Nezamzadeh Ezhieh, A. (2017). Polymer nanocomposites based on modified ZrO2 NPs and poly (vinyl alcohol)/poly (vinyl pyrrolidone) blend: optical, morphological, and thermal properties. Polymer-Plastics Technology and Engineering, 56(10), 1136-1145.
[32]      Gillani, R., Ercan, B., Qiao, A., & Webster, T. J. (2010). Nanofunctionalized zirconia and barium sulfate particles as bone cement additives. International journal of nanomedicine, 5, 1.
[33]      Zhang, H., Lu, H., Zhu, Y., Li, F., Duan, R., Zhang, M., & Wang, X. (2012). Preparations and characterizations of new mesoporous ZrO2 and Y2O3-stabilized ZrO2 spherical powders. Powder technology, 227, 9-16.
[34]      Shim, J. H., Chao, C. C., Huang, H., & Prinz, F. B. (2007). Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chemistry of Materials, 19(15), 3850-3854.
[35]      Ramamoorthy, R., Dutta, P. K., & Akbar, S. A. (2003). Oxygen sensors: materials, methods, designs and applications. Journal of materials science, 38(21), 4271-4282.
[36]      Su, Y. H., & Lai, Y. S. (2014). Performance enhancement of natural pigments on a high light transmission ZrO2 nanoparticle layer in a waterbased dyesensitized solar cell. International Journal of Energy Research, 38(4), 436-443.
[37]      Jalill, R. D. A., Jawad, M. M. H. M., & Abd, A. N. (2017). Plants extracts as green synthesis of zirconium oxide nanoparticles. J. Genet. Environ. Res. Conserv., 5(1), 6-23.
[38]      Gowri, S., Gandhi, R. R., & Sundrarajan, M. (2014). Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol. Journal of Materials Science & Technology, 30(8), 782-790.
[39]      Balaji, S., Mandal, B. K., Ranjan, S., Dasgupta, N., & Chidambaram, R. (2017). Nano-zirconia–evaluation of its antioxidant and anticancer activity. Journal of Photochemistry and Photobiology B: Biology, 170, 125-133.
[40]      Loghman-Estarki, M. R., Hajizadeh-Oghaz, M., Edris, H., & Razavi, R. S. (2013). Comparative studies on synthesis of nanocrystalline Sc2O3–Y2O3doped zirconia (SYDZ) and YSZ solid solution via modified and classic Pechini method. CrystEngComm, 15(29), 5898-5909.
[41]      Behbahani, A., Rowshanzamir, S., & Esmaeilifar, A. (2012). Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia. Procedia Engineering, 42, 908-917.
[42]      Mahmoud, A. K., Fadhill, Z., Al-nassar, S. I., Husein, F. I., Akman, E., & Demir, A. (2013). Synthesis of zirconia nanoparticles in distilled water solution by laser ablation technique. Journal of Materials Science and Engineering. B, 3(6B).
[43]      Liang, J., Deng, Z., Jiang, X., Li, F., & Li, Y. (2002). Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorganic chemistry, 41(14), 3602-3604.
[44]      Heshmatpour, F., & Aghakhanpour, R. B. (2011). Synthesis and characterization of nanocrystalline zirconia powder by simple sol–gel method with glucose and fructose as organic additives. Powder Technology, 205(1-3), 193-200.
[45]      Geuzens, E., Vanhoyland, G., D'Haen, J., Van Bael, M. K., Van den Rul, H., Mullens, J., & Van Poucke, L. C. (2004). Synthesis of tetragonal zirconia nanoparticles via an aqueous solution-gel method. In Key Engineering Materials (Vol. 264, pp. 343-346). Trans Tech Publications.
[46]      Salavati-Niasari, M., Dadkhah, M., & Davar, F. (2009). Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium (IV) nitrate as new precursor complex. Inorganica Chimica Acta, 362(11), 3969-3974.
[47]      Tai, C. Y., Hsiao, B. Y., & Chiu, H. Y. (2004). Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 237(1-3), 105-111.
[48]      Liang, J., Jiang, X., Liu, G., Deng, Z., Zhuang, J., Li, F., & Li, Y. (2003). Characterization and synthesis of pure ZrO2 nanopowders via sonochemical method. Materials research bulletin, 38(1), 161-168.
[49]      Zhao, N., Pan, D., Nie, W., & Ji, X. (2006). Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization. Journal of the American Chemical Society, 128(31), 10118-10124.
[50]      Zhao, Y., Zhang, Y., Li, J., & Du, X. (2014). Solvothermal synthesis of visible-light-active N-modified ZrO2 nanoparticles. Materials Letters, 130, 139-142.
[51]      Zhang, S. C., Mulholland, G., & Messing, G. L. (1996). Synthesis of ZrO2 nanoparticles by spray pyrolysis. Journal of Materials Synthesis and Processing, 4(4), 227-233.
[52]      Dittmar, A., Hoang, D. L., & Martin, A. (2008). TPR and XPS characterization of chromia–lanthana–zirconia catalyst prepared by impregnation and microwave plasma enhanced chemical vapour deposition methods. Thermochimica Acta, 470(1-2), 40-46.
[53]      Woudenberg, F. C., Sager, W. F., ten Elshof, J. E., & Verweij, H. (2004). Nanostructured dense ZrO2 thin films from nanoparticles obtained by emulsion precipitation. Journal of the American Ceramic Society, 87(8), 1430-1435.
[54]      Chen, L., Mashimo, T., Omurzak, E., Okudera, H., Iwamoto, C., & Yoshiasa, A. (2011). Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid. The Journal of Physical Chemistry C, 115(19), 9370-9375.
[55]      Manivasakan, P., Rajendran, V., Ranjan Rauta, P., Bandhu Sahu, B., & Krushna Panda, B. (2011). Synthesis of monoclinic and cubic ZrO2 nanoparticles from zircon. Journal of the American Ceramic Society, 94(5), 1410-1420.
[56]      Tallón, C., Moreno, R., & Nieto, M. I. (2009). Synthesis of ZrO2 nanoparticles by freeze drying. International Journal of Applied Ceramic Technology, 6(2), 324-334.
[57]      Taghizadeh, M. T., & Vatanparast, M. (2016). Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells. Journal of colloid and interface science, 483, 1-10.
[58]      Nawale, A. B., Kanhe, N. S., Bhoraskar, S. V., Mathe, V. L., & Das, A. K. (2012). Influence of crystalline phase and defects in the ZrO2 nanoparticles synthesized by thermal plasma route on its photocatalytic properties. Materials Research Bulletin, 47(11), 3432-3439.
[59]      Ashkarran, A. A., Afshar, S. A. A., & Aghigh, S. M. (2010). Photocatalytic activity of ZrO2 nanoparticles prepared by electrical arc discharge method in water. Polyhedron, 29(4), 1370-1374.
[60]      Salah, N., Habib, S. S., Khan, Z. H., & Djouider, F. (2011). Thermoluminescence and photoluminescence of ZrO2 nanoparticles. Radiation Physics and Chemistry, 80(9), 923-928.
[61]      Tahmasebpour, M. B. A. A., Babaluo, A. A., & Aghjeh, M. R. (2008). Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method. Journal of the European Ceramic Society, 28(4), 773-778.
[62]      Cao, H. Q., Qiu, X. Q., Luo, B., Liang, Y., Zhang, Y. H., Tan, R. Q., ... & Zhu, Q. M. (2004). Synthesis and roomtemperature ultraviolet photoluminescence properties of zirconia nanowires. Advanced Functional Materials, 14(3), 243-246.
[63]      Li, N., Dong, B., Yuan, W., Gao, Y. A., Zheng, L., Huang, Y., & Wang, S. (2007). ZrO2 nanoparticles synthesized using ionic liquid microemulsion. Journal of Dispersion Science and Technology, 28(7), 1030-1033.
[64]      Uddin, I., & Ahmad, A. (2016). Bioinspired eco-friendly synthesis of ZrO2 nanoparticles. JOURNAL OF MATERIALS, 7(9), 3068-3075.
[65]      Bansal, V., Rautaray, D., Ahmad, A., & Sastry, M. (2004). Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. Journal of Materials Chemistry, 14(22), 3303-3305.
[66]      Gowri, S., Gandhi, R. R., Senthil, S., & Sundrarajan, M. (2015). Effect of Calcination Temperature on Nyctanthes Plant Mediated Zirconia Nanoparticles; Optical and Antibacterial Activity for Optimized Zirconia. Journal of Bionanoscience, 9(3), 181-189.
[67]      Majedi, A., Abbasi, A., & Davar, F. (2016). Green synthesis of zirconia nanoparticles using the modified Pechini method and characterization of its optical and electrical properties. Journal of Sol-Gel Science and Technology, 77(3), 542-552.
[68]      Saraswathi, V. S., & Santhakumar, K. (2017). Photocatalytic activity against azo dye and cytotoxicity on MCF-7 cell lines of zirconium oxide nanoparticle mediated using leaves of Lagerstroemia speciosa. Journal of Photochemistry and Photobiology B: Biology, 169, 47-55.
[69]      Kumaresan, M., Anand, K. V., Govindaraju, K., Tamilselvan, S., & Kumar, V. G. (2018). Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microbial pathogenesis, 124, 311-315.
[70]      Tharani, S. S. N. (2016). Green synthesis of zirconium dioxide (ZrO2) nano particles using Acalypha indica leaf extract. International Journal of Engineering and Applied Sciences, 3(4).
[71]      Nimare, P., Koser, A. A. (2016). Biological synthesis of ZrO2 nanoparticles using Azadirachta indica. International Research Journal of Engineering and Technology, 3(7), 1910-1912.
[72]       Sathishkumar, M., Sneha, K., & Yun, Y. S. (2013). Green fabrication of zirconia nano-chains using novel Curcuma longa tuber extract. Materials Letters, 98, 242-245