Scopus, ISC, J-Gate, CAS

Document Type : Short Review Article


Department of Chemistry, Federal University of Agriculture, PMB 2373 Makurdi, Nigeria



The intensive use of herbicides and other classes of chemicals products, in agricultural practices has resulted in serious environmental impact causing increasing level of herbicide residues in natural water, soil, and foodstuffs. Controlled release nano-formulation of herbicides in which the herbicides are incorporated in a nanosized matrix or carrier before application will be an excellent alternative over the conventional methods of herbicides application usually employed to control pathogens, weeds and several pests, thereby limiting the amount of the active ingredient available for unwanted processes. This review presents a better approach using nanotechnology for controlled release formulation of herbicides in agriculture.

Graphical Abstract

Controlled Release of Herbicides Using Nano-Formulation: A Review


Main Subjects

[1]       Sekhon, B. S. (2014). Nanotechnology in agri-food production: an overview. Nanotechnology, science and applications7, 31-35.
[2]        PRD (2017). 2017 World Population Data Sheet with a Special Focus on Youth; Population Reference Bureau.
[3]        Rana, S.S. and Rana, M.C. (2015). Advances in Weed Management. Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Pp. 21-5.
[4]        Bai, B., Xu, X., Hai, J., Hu, N., Wang, H., & Suo, Y. (2019). Lauric Acid-Modified Nitraria Seed Meal Composite as Green Carrier Material for Pesticide Controlled Release. Journal of Chemistry2019.
[5]        Sopeña, F., Maqueda, C., & Morillo, E. (2009). Controlled release formulations of herbicides based on micro-encapsulation. Ciencia e investigación agraria36(1), 27-42.
[6]        Hashim, N., Muda, Z., Hamid, S. A., Isa, I. M., Kamari, A., Mohamed, A., ... & Ghani, S. A. (2014). Characterization and controlled release formulation of agrochemical herbicides based on zinc-layered hydroxide-3-(4-methoxyphenyl) propionate nanocomposite. J Phys Chem Sci1, 1-6.
[7]        Aouada, F. A., de Moura, M. R., Orts, W. J., & Mattoso, L. H. (2010). Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. Journal of Materials Science45(18), 4977-4985.
[8]        Onyido, I., Sha’Ato, R., & Nnamonu, L. A. (2012). Environmentally friendly formulations of trifluralin based on alginate modified starch. Journal of Environmental protection3(09), 1085.
[9]        Mahmood, K., Suleman, M., Hassan, S., & Badshah, S. K. (2013). Assessment the leaching potential of pendimethalin and its transformation products in soil. World Applied Sciences Journal26(5), 583-587.
[10]      Itodo, H. U., Nnamonu, L. A., & Wuana, R. A. (2017). Green Synthesis of Copper Chitosan Nanoparticles for Controlled Release of Pendimethalin. Asian Journal of Chemical Sciences, 1-10.
[11]      Koterba, M. T., Banks, W. S. L., & Shedlock, R. J. (1993). Pesticides in shallow groundwater in the Delmarva Peninsula. Journal of Environmental Quality22(3), 500-518.
[12]      Jampílek, J., & Kráľová, K. (2015). Applications of nanoformulations in agricultural production and their impact on food and human health. Proceedings of ECOpole9.
[13]      Maruyama, C. R., Guilger, M., Pascoli, M., Bileshy-José, N., Abhilash, P. C., Fraceto, L. F., & De Lima, R. (2016). Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Scientific reports6, 19768.
[14]      Hashim, N., Sharif, S. N. M., Muda, Z., Isa, I. M., Bakar, S. A., Ali, N. M., ... & Mamat, M. (2019). Release Behavior Of Dichlorprop From Zn/Al-Ldh-Dichlorprop Nanocomposite Into Chloride, Carbonate And Phosphate Solutions. Jurnal Teknologi81(2).
[15]      Grillo, R., Pereira, A. E., Nishisaka, C. S., de Lima, R., Oehlke, K., Greiner, R., & Fraceto, L. F. (2014). Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. Journal of hazardous materials278, 163-171.
[16]      Grillo, R., Clemente, Z., de Oliveira, J. L., Campos, E. V. R., Chalupe, V. C., Jonsson, C. M., ... & Oehlke, K. (2015). Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity. Journal of hazardous materials286, 562-572.
[17]      Kavitha, K. S., Baker, S., Rakshith, D., Kavitha, H. U., Yashwantha Rao, H. C., Harini, B. P., & Satish, S. (2013). Plants as green source towards synthesis of nanoparticles. Int Res J Biol Sci2(6), 66-76.
[18]      Hanemann, T., & Szabó, D. V. (2010). Polymer-nanoparticle composites: from synthesis to modern applications. Materials3(6), 3468-3517.
[19]      Krichevskii, G. E. (2010). Nanotechnologies: dangers and risks. Inspecting principles for nano technologies and nanomaterials. Nanotekhnol Okhrana Zdorov’ya2(3), 4.
[20]      Dai, J., & Bruening, M. L. (2002). Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Letters2(5), 497-501.
[21]      Adak, T., Kumar, J., Shakil, N. A., & Walia, S. (2012). Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. Journal of Environmental Science and Health, Part B47(3), 217-225.
[22]      Vidyasagar, G. M. (2014). Green synthesis, characterization and antimicrobial activity of Silver Nanoparticles by using Sterculia foetida L. young leaves aqueous extract.
[23]      Nikhil N. S., Samrat K. S. and Karthick R. N. (2014). Preparation of Copper Nanoparticles Incorporated Fluconazole for the Improved Antifungal Activity against Human Pathogenic Fungi. International Review of Applied Biotechnology and Biochemistry: 2 (1): 251-259.
[24]      Kah, M., Beulke, S., Tiede, K., & Hofmann, T. (2013). Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology.
[25]      preet Kaur, S., Rao, R., Hussain, A., & Khatkar, S. (2011). Preparation and characterization of rivastigmine loaded chitosan nanoparticles. Journal of Pharmaceutical sciences and Research3(5), 1227.
[26]      Biswal, S. K., Nayak, A. K., Parida, U. K. and Nayak P. L. (2012). Applications of Nanotechnology in Agriculture and Food Sciences. International Journal of Science, Innovation and Discovery. 2 (1): 21-36.
[27]      Prasad, R., Kumar, V., & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology13(6), 705-713.
[28]      Prasad, R., Kumar, V., & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology13(6), 705-713.
[29]      Scrinis, G., & Lyons, K. (2007). The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. International Journal of Sociology of Food and Agriculture15(2), 22-44.
[30]      Huang, B., Chen, F., Shen, Y., Qian, K., Wang, Y., Sun, C., ... & Cui, H. (2018). Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials8(2), 102.
[31]      Rüegg, W. T., Quadranti, M., & Zoschke, A. (2007). Herbicide research and development: challenges and opportunities. Weed Research47(4), 271-275.
[32]      Qing X., Guohua L., Yuanjing Z., and Fei N. (2019). Preparation and Properties of Photo-responsive Controlled Release Pesticide Film. Advances in Engineering Research, 181:230-233.
[33]       Faria, D. M., Júnior, D., Macias, S., Nascimento, J. P. L. D., Nunes, E. D. S., Marques, R. P., ... & Moreto, J. A. (2017). Development and evaluation of a controlled release system of TBH herbicide using alginate microparticles. Materials Research20(1), 225-235.
[34]      Usman, M., Ibrahim, N., Shameli, K., Zainuddin, N., & Yunus, W. (2012). Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Molecules17(12), 14928-14936.
[35]      Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in polymer science31(7), 603-632.
[36]      Chen, C., Gao, Z., Qiu, X., & Hu, S. (2013). Enhancement of the controlled-release properties of chitosan membranes by crosslinking with suberoyl chloride. Molecules18(6), 7239-7252.
[37]      Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International journal of biological macromolecules77, 36-51.
[38]      Malathi, S., Balakumaran, M. D., Kalaichelvan, P. T., & Balasubramanian, S. (2013). Green synthesis of gold nanoparticles for controlled delivery. Adv Mater Lett4(12), 933-940.
[39]      Lakshmi, K. B., & Sudha, P. N. (2012). Adsorption of Copper (II) ion onto chitosan/sisal/banana fiber hybrid composite. International journal of environmental sciences3(1), 453-470.
[40]      Nnamonu, L. A., Sha’Ato, R., & Onyido, I. (2012). Alginate reinforced chitosan and starch beads in slow release formulation of imazaquin herbicide—preparation and characterization. Materials Sciences and Applications3(08), 566.
[41]      Li, J., Yao, J., Li, Y., & Shao, Y. (2012). Controlled release and retarded leaching of pesticides by encapsulating in carboxymethyl chitosan/bentonite composite gel. Journal of Environmental Science and Health, Part B47(8), 795-803.
[42]      dos Santos Silva, M., Cocenza, D. S., Grillo, R., de Melo, N. F. S., Tonello, P. S., de Oliveira, L. C., ... & Fraceto, L. F. (2011). Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. Journal of hazardous materials190(1-3), 366-374.