Scopus     h-index: 24

Document Type : Focus Review Article

Author

Smt. Kasturbai Walchand College, Shivaji University, Kolhapur, (MS), India.

10.33945/SAMI/JCR.2019.1.99113

Abstract

A large variety of organosulfur compounds have been shown to having diverse biological effects such as anti-oxidant effects, anti-inflammatory properties, inhibition of platelet aggregation, reduction of systolic blood pressure, and reduction of cholesterol. Among these, sulfoxides and sulfones show wide and significant applications as commodity chemical in various fields of chemistry. Therefore, synthesis of sulfoxides as well as sulfones has remained a point of attraction for synthetic organic chemists. Among array of methods used to synthesize the sulfoxides or sulfones, oxidation of sulfide is the most convenient way. This review precises chemoselective methods for the synthesis of the sulfoxides as well as sulfones focusing on oxidative protocols. This review will aid researchers to explore and utilise the mentioned protocols for different organic transformations.

Graphical Abstract

A Concise Review on Synthesis of Sulfoxides and Sulfones with Special Reference to Oxidation of Sulfides

Keywords

Main Subjects

 
[1]   Sahu, S. C. (2002). Dual role of organosulfur compounds in foods: a review. Journal of Environmental Science and Health, Part C20(1), 61-76.
[2]   Boswell, C. C., & Friesen, D. K. (1993). Elemental sulfur fertilizers and their use on crops and pastures. Fertilizer research35(1-2), 127-149.
[3]   Lamberth, C. (2004). Sulfur chemistry in crop protection. Journal of Sulfur Chemistry25(1), 39-62.
[4]   Mussinan, C. J., & Keelan, M. E. (1994). Sulfur compounds in foods: an overview. In ACS symposium series (USA).
[5]   Ramadas, K., & Srinivasan, N. (1995). Sodium chlorite-yet another oxidant for thiols to disulphides. Synthetic communications25(2), 227-234.
[6]   Fisher, H. L. (1953). Elastomers. Industrial & Engineering Chemistry45(10), 2188-2198.
[7]   Carreño, M. C. (1995). Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chemical reviews95(6), 1717-1760.
[8]   Colobert, F., Tito, A., Khiar, N., Denni, D., Medina, M. A., Martin-Lomas, M., ... & Solladié, G. (1998). Enantioselective Approach to Polyhydroxylated Compounds Using Chiral Sulfoxides: Synthesis of Enantiomerically Pure myo-Inositol and Pyrrolidine Derivatives. The Journal of Organic Chemistry63(24), 8918-8921.
[9]   Carreño, M. C., Ribagorda, M., & Posner, G. H. (2002). Titanium‐Promoted Stereoselective Synthesis of Hydroindolones from p‐Quinamines by Domino Conjugate Additions. Angewandte Chemie International Edition41(15), 2753-2755.
[10]  Patai, S.; Rappoport, H.; Sterling, J. J. The Chemistry of Sulfones and Sulphoxides;Wiley: New York, 1988, 233-378.
[11] Khiar, N., Fernández, I., & Alcudia, F. (1993). C2-Symmetric bis-sulfoxides as chiral ligands in metal catalysed asymmetric diels-alder reactions. Tetrahedron letters34(1), 123-126.
[12] Kunieda, N., Nokami, J., & Kinoshita, M. (1976). β-Disulfoxides. II. The Preparation of Some Optically Active β-Disulfoxides. Bulletin of the Chemical Society of Japan49(1), 256-259.
[13]   Fernandez, I., & Khiar, N. (2003). Recent developments in the synthesis and utilization of chiral sulfoxides. Chemical reviews103(9), 3651-3706.
[14]  Padmanabhan, S., Lavin, R. C., & Durant, G. J. (2000). Asymmetric synthesis of a neuroprotective and orally active N-methyl-D-aspartate receptor ion-channel blocker, CNS 5788. Tetrahedron: Asymmetry11(17), 3455-3457.
[15] Martı́n, S. E., & Rossi, L. I. (2001). An efficient and selective aerobic oxidation of sulfides to sulfoxides catalyzed by Fe (NO3) 3–FeBr3. Tetrahedron Letters42(41), 7147-7151.
[16]  Afzaletdinova, N. G., Ibatova, E. R., & Murinov, Y. I. (2006). Extraction of iridium (IV) by dihexyl sulfoxide from hydrochloric acid solutions. Russian journal of inorganic chemistry51(6), 971-976.
[17]  Field, L. (1978). Some developments in synthetic organic sulfur chemistry since 1970. Synthesis1978(10), 713-740.
[18] Trost, B. M. (1978). . alpha.-Sulfenylated carbonyl compounds in organic synthesis. Chemical Reviews78(4), 363-382.
[19] McTavish, D., Buckley, M. M. T., & Heel, R. C. (1991). Omeprazole. Drugs42(1), 138-170.
[20] Spencer, C. M., & Faulds, D. (2000). Esomeprazole. Drugs60(2), 321-329.
[21] Salas, M., Ward, A., & Caro, J. (2002). Are proton pump inhibitors the first choice for acute treatment of gastric ulcers? A meta analysis of randomized clinical trials. BMC gastroenterology2(1), 17.
[22]   Baker, D. E. (2001). Esomeprazole magnesium (Nexium). Reviews in gastroenterological disorders1(1), 32-41.
[23]   Mahamuni, N. N., Gogate, P. R., & Pandit, A. B. (2007). Selective synthesis of sulfoxides from sulfides using ultrasound. Ultrasonics sonochemistry14(2), 135-142.
[24]   Khan, M. H., Hasany, S. M., Khan, M. A., & Ali, A. (1994). Extractive Separation of Zirconium from Nitric Acid Solution with Dibutyl Sulfoxide in Xylene. Radiochimica Acta65(4), 239-244.
[25]    Shukla, J. P., Singh, R. K., Sawant, S. R., & Varadarajan, N. (1993). Liquid-liquid extraction of palladium (II) from nitric acid by bis (2-ethylhexyl) sulphoxide. Analytica chimica acta276(1), 181-187.
[26]   Simpkins, N. S. (2013). Sulphones in organic synthesis (Vol. 10). Elsevier.
[27]           Welz, B. (1999). Atomic absorption spectrometry—pregnant again after 45 years. Spectrochimica Acta Part B: Atomic Spectroscopy54(14), 2081-2094.
[28]           Fang, S. H., Padmavathi, V., Rao, Y. K., Subbaiah, D. V., Thriveni, P., Geethangili, M., ... & Tzeng, Y. M. (2006). Biological evaluation of sulfone derivatives as anti-inflammatory and tumor cells growth inhibitory agents. International immunopharmacology6(11), 1699-1705.
[29]           La Regina, G., Coluccia, A., Brancale, A., Piscitelli, F., Gatti, V., Maga, G., ... & Novellino, E. (2011). Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: new cyclic substituents at indole-2-carboxamide. Journal of medicinal chemistry54(6), 1587-1598.
[30]   Takamuku, S., & Jannasch, P. (2012). Multiblock copolymers containing highly sulfonated poly (arylene sulfone) blocks for proton conducting electrolyte membranes. Macromolecules45(16), 6538-6546.
[31]    Suzuki, Y., Higashihara, T., Ando, S., & Ueda, M. (2012). Synthesis and characterization of high refractive index and high Abbe’s number poly (thioether sulfone) s based on tricyclo [5.2. 1.02, 6] decane moiety. Macromolecules45(8), 3402-3408.
[32]     Xu, W., Yang, S., Bhadury, P., He, J., He, M., Gao, L, Hu, D., Song, B. (2011). Synthesis and bioactivity of novel sulfone derivatives containing 2, 4-dichlorophenyl substituted 1, 3, 4-oxadiazole/thiadiazole moiety as chitinase inhibitors. Pesticide biochemistry and physiology101(1), 6-15.
[33]     Liu, K. G., Robichaud, A. J., Bernotas, R. C., Yan, Y., Lo, J. R., Zhang, M. Y., Hughes, Z. A., Huselton, C., Zhang, G. M., Zhang, J. Y., Kowal, D. M. (2010). 5-Piperazinyl-3-sulfonylindazoles as potent and selective 5-hydroxytryptamine-6 antagonists. Journal of medicinal chemistry53(21), 7639-7646.
[34]    La Regina, G., Coluccia, A., Brancale, A., Piscitelli, F., Famiglini, V., Cosconati, S., ... & Schols, D. (2012). New nitrogen containing substituents at the indole-2-carboxamide yield high potent and broad spectrum indolylarylsulfone HIV-1 non-nucleoside reverse transcriptase inhibitors. Journal of medicinal chemistry55(14), 6634-6638.
[35]   Suja, T. D., Divya, K. V. L., Naik, L. V., Kumar, A. R., & Kamal, A. (2016). Copper-catalyzed three-component synthesis of aminonaphthoquinone–sulfonylamidine conjugates and in vitro evaluation of their antiproliferative activity. Bioorganic & medicinal chemistry letters26(8), 2072-2076.
[36]           Beretta, G. L., Zaffaroni, N., & Varchi, G. (2016). Novel 20 (S)-sulfonylamidine derivatives of camptothecin and the use thereof as a potent antitumor agent: a patent evaluation of WO2015048365 (A1). Expert opinion on therapeutic patents26(5), 637-642.
[37]           Bansode, P., Jadhav, J., Kurane, R., Choudhari, P., Bhatia, M., Khanapure, S., ... & Rashinkar, G. (2016). Potentially antibreast cancer enamidines via azide–alkyne–amine coupling and their molecular docking studies. RSC Advances6(93), 90597-90606.
[38]           Chang, S. Y., Bae, S. J., Lee, M. Y., Baek, S. H., Chang, S., & Kim, S. H. (2011). Chemical affinity matrix-based identification of prohibitin as a binding protein to anti-resorptive sulfonyl amidine compounds. Bioorganic & medicinal chemistry letters21(2), 727-729.
[39]           Heitsch, H., Becker, R. H., Kleemann, H. W., & Wagner, A. (1997). 3N-Methylbiphenylsulfonylurea and-carbamate substituted imidazo [4, 5-b] pyridines. Potent antagonists of the ANG II AT1 receptors. Bioorganic & medicinal chemistry5(4), 673-678.
[40]           Cornelio, B., Laronze-Cochard, M., Ceruso, M., Ferraroni, M., Rance, G. A., Carta, F., Sapi, J. (2016). 4-Arylbenzenesulfonamides as human carbonic anhydrase Inhibitors (hCAIs): Synthesis by Pd nanocatalyst-mediated Suzuki–Miyaura reaction, enzyme inhibition, and X-ray crystallographic studies. Journal of medicinal chemistry59(2), 721-732.
[41]           Eldehna, W. M., Al-Ansary, G. H., Bua, S., Nocentini, A., Gratteri, P., Altoukhy, A., ... & Supuran, C. T. (2017). Novel indolin-2-one-based sulfonamides as carbonic anhydrase inhibitors: synthesis, in vitro biological evaluation against carbonic anhydrases isoforms I, II, IV and VII and molecular docking studies. European journal of medicinal chemistry127, 521-530.
[42]           Iyer, M. R., Cinar, R., Katz, A., Gao, M., Erdelyi, K., Jourdan, T., ... & Kunos, G. (2017). Design, synthesis, and biological evaluation of novel, non-brain-penetrant, hybrid cannabinoid CB1R inverse agonist/inducible nitric oxide synthase (iNOS) inhibitors for the treatment of liver fibrosis. Journal of medicinal chemistry60(3), 1126-1141.
[43]           Colby, C. E., & Loughlin, C. M. (1887). Ueber die Einwirkung von Schwefligsäureanhydrid auf Benzol. Berichte der deutschen chemischen Gesellschaft20(1), 195-198.
[44]           Chasar, D. W., & Pratt, T. M. (1978). A direct synthesis of 2-and 4-hydroxydiaryl sulfoxides. Phosphorus and Sulfur and the Related Elements5(1), 35-40.
[45]           Thomas, C. A. (1941). Anhydrous aluminum chloride in organic chemistry.
[46]           Strecker, W. (1910). Einwirkung von Organomagnesiumverbindungen auf Bortrichlorid, Chlorschwefel, sowie auf das Chlorid und die Ester der schwefligen Säure. Berichte der deutschen chemischen Gesellschaft43(1), 1131-1136.
[47]           Colonna, S., Banfi, S., Fontana, F., & Sommaruga, M. (1985). Asymmetric periodate oxidation of functionalized sulfides catalyzed by bovine serum albumin. The Journal of Organic Chemistry50(6), 769-771.
[48]           Bickart, P., Carson, F. W., Jacobus, J., Miller, E. G., & Mislow, K. (1968). Thermal racemization of allylic sulfoxides and interconversion of allylic sulfoxides and sulfenates. Mechanism and stereochemistry. Journal of the American Chemical Society90(18), 4869-4876.
[49]           Wudl, F., & Lee, T. B. (1973). Asymmetric synthesis of chiral sulfoxides. II. Intramolecular oxygen to nitrogen sulfinyl migration. Journal of the American Chemical Society95(19), 6349-6358.
[50]           Monteiro, H. J., & de Souza, J. P. (1975). A new synthesis of β-keto-phenylsulfoxides. Tetrahedron Letters16(11), 921-924.
[51]           Palimkar, S. S., Siddiqui, S. A., Daniel, T., Lahoti, R. J., & Srinivasan, K. V. (2003). Ionic liquid-promoted regiospecific friedlander annulation: novel synthesis of quinolines and fused polycyclic quinolines. The Journal of organic chemistry68(24), 9371-9378.
[52]           Saikia, I., Borah, A. J., & Phukan, P. (2016). Use of bromine and bromo-organic compounds in organic synthesis. Chemical reviews116(12), 6837-7042.
[53]           Andersen, K. K. (1962). Synthesis of (+)-ethyl p-tolyl sulfoxide from (−)-menthyl (−)-p-toluenrsulfinate. Tetrahedron Letters3(3), 93-95.
[54]           Folli, U., Iarossi, D., Montanari, F., & Torre, G. (1968). Asymmetric induction and configurational correlations in oxidations at sulphur. Part III. Oxidations of aryl alkyl sulphides to sulphoxides by optically active peroxy-acids. Journal of the Chemical Society C: Organic, 1317-1322.
[55]           Andersen, K. K., Gaffield, W., Papanikolaou, N. E., Foley, J. W., & Perkins, R. I. J. (1971). Am Chem. Soc. 1964, 86, 5637-5646.(c) Andersen, K. K. Int. J. Sulfur. Chem6, 69-76.
[56]           Whitesell, J. K., & Wong, M. S. (1991). Improved method for the preparation of enantiomerically pure sulfinate esters. The Journal of Organic Chemistry56(14), 4552-4554.
[57]           Whitesell, J. K., & Wong, M. S. (1994). Asymmetric synthesis of chiral sulfinate esters and sulfoxides. Synthesis of sulforaphane. The Journal of Organic Chemistry59(3), 597-601.
[58]           Resek, J. E., & Meyers, A. I. (1995). Unsaturation of ketones, nitriles and lactams with methyl phenylsulfinate. Tetrahedron letters36(39), 7051-7054.
[59]           Girodier, L. D., Maignan, C. S., & Rouessac, F. P. (1995). Preparation of optically active 2-(or 3)(p-tolylsulfinyl)-3 (or 2) furyl-or thienylcarboxaldehydes. Tetrahedron: Asymmetry6(8), 2045-2052.
[60]           Effenberger, F., & Daub, J. (1969). Enoläther, V. Die Reaktion von Thionylchlorid mit Enoläthern. Chemische Berichte102(1), 104-111.
[61]           Day, J., & Cram, D. J. (1965). Stereochemistry of Nucleophilic Substitution at Sulfur. Stereospecific Synthesis of an Optically Active Sulfilimine1. Journal of the American Chemical Society87(19), 4398-4399.
[62]           Edwards, D., & Stenlake, J. B. (1954). The oxidation of alkyl sulphides. Journal of the Chemical Society (Resumed), 3272-3274.
[63]           Louw, R., Vermeeren, H. P., van Asten, J. J., & Ultée, W. J. (1976). Reaction of sulphides with acyl nitrates; a simple and rapid method for preparing sulphoxides. Journal of the Chemical Society, Chemical Communications, (13), 496-497.
[64]           Olah, G. A., Gupta, B. B., & Narang, S. C. (1979). Onium ions. 20. Ambident reactivity of the nitronium ion. Nitration vs. oxidation of heteroorganic (sulfur, selenium, phosphorus, arsenic, antimony) compounds. Preparation and NMR spectroscopic (carbon-13, nitrogen-15, phosphorus-31) study of nitro and nitrito onium ions. Journal of the American Chemical Society101(18), 5317-5322.
[65]           Nagao, Y., Ochiai, M., Kaneko, K., Maeda, A., Watanabe, K., & Fujita, E. (1977). Novel reactions of organic sulfur and selenium compounds with thallium (III) nitrate: sulfoxide and selenoxide formation and pummerer-like reaction. Tetrahedron Letters18(15), 1345-1348.
[66]           Tse-Lok, H. O., & Wong, C. M. (1972). Ceric ammonium nitrate oxidation of carboxylic acid hydrazides. Synthesis1972(10), 562-563.
[67]           Bahrami, K., Khodaei, M. M., & Sheikh Arabi, M. (2010). Tapc-promoted oxidation of sulfides and deoxygenation of sulfoxides. The Journal of organic chemistry75(18), 6208-6213.
[68]           Iranpoor, N., Firouzabadi, H., & Pourali, A. R. (2002). Dinitrogen tetroxide supported on polyvinylpyrrolidone (PVP–N2O4): a new nitrosating and coupling agent for thiols and a selective oxidant for sulfides and disulfides. Tetrahedron58(25), 5179-5184.
[69]           Kowalski, P., Mitka, K., Ossowska, K., & Kolarska, Z. (2005). Oxidation of sulfides to sulfoxides. Part 1: Oxidation using halogen derivatives. Tetrahedron8(61), 1933-1953.
[70]           Leonard, N. J., & Johnson, C. R. (1962). Periodate oxidation of sulfides to sulfoxides. Scope of the reaction. The Journal of Organic Chemistry27(1), 282-284.
[71]           Huang, J. Y., Li, S. J., & Wang, Y. G. (2006). TEMPO-linked metalloporphyrins as efficient catalysts for selective oxidation of alcohols and sulfides. Tetrahedron letters47(32), 5637-5640.
[72]           Kim, S. S., & Rajagopal, G. (2003). Efficient and mild oxidation of sulfides to sulfoxides by iodosobenzene catalyzed by Cr (salen) complex. Synthesis2003(16), 2461-2463.
[73]           Roh, K. R., Kim, K. S., & Kim, Y. H. (1991). Facile oxidation of sulfides to sulfoxides using iodosobenzene and benzeneseleninic acid as a catalyst. Tetrahedron letters32(6), 793-796.
[74]           Shukla, V. G., Salgaonkar, P. D., & Akamanchi, K. G. (2003). A mild, chemoselective oxidation of sulfides to sulfoxides using o-iodoxybenzoic acid and tetraethylammonium bromide as catalyst. The Journal of organic chemistry68(13), 5422-5425.
[75]           Bravo, A., Dordi, B., Fontana, F., & Minisci, F. (2001). Oxidation of organic sulfides by Br2 and H2O2. Electrophilic and free-radical processes. The Journal of organic chemistry66(9), 3232-3234.
[76]           Kar, G., Saikia, A. K., Bora, U., Dehury, S. K., & Chaudhuri, M. K. (2003). Synthesis of cetyltrimethylammonium tribromide (CTMATB) and its application in the selective oxidation of sulfides to sulfoxides. Tetrahedron letters44(24), 4503-4505.
[77]           áIndrasena Reddy, T., & Varma, R. (1997). Ti-beta-catalysed selective oxidation of sulfides to sulfoxides using urea–hydrogen peroxide adduct. Chemical Communications, (5), 471-472.
[78]           Breton, G. W., Fields, J. D., & Kropp, P. J. (1995). Surface-mediated reactions. 5. Oxidation of sulfides, sulfoxides, and alkenes with tert-butyl hydroperoxide. Tetrahedron letters36(22), 3825-3828.
[79]           Ganem, B., Biloski, A. J., & Heggs, R. P. (1980). A biomimetic heteroatom oxidation. Tetrahedron Letters21(8), 689-690.
[80]           Imada, Y., Kitagawa, T., Iwata, S., Komiya, N., & Naota, T. (2014). Oxidation of sulfides with hydrogen peroxide catalyzed by synthetic flavin adducts with dendritic bis (acylamino) pyridines. Tetrahedron70(2), 495-501.
[81]           Vágó, J., & Paál-Lukács, J. (1989). On the stability and decomposition of phenyl (phenylazo) methyl hydroperoxide. Tetrahedron letters30(42), 5773-5776.
[82]           Lewin, L.(1928) J. Prakt. Chem., VJ, 282.
[83]           Sakuraba, H., Natori, K., & Tanaka, Y. (1991). Asymmetric oxidation of alkyl aryl sulfides in crystalline cyclodextrin complexes. The Journal of Organic Chemistry56(13), 4124-4129.
[84]           Jana, N. K., & Verkade, J. G. (2003). Phase-vanishing methodology for efficient bromination, alkylation, epoxidation, and oxidation reactions of organic substrates. Organic letters5(21), 3787-3790.
[85]           Arends, I. W. C. E., Sheldon, R. A., & Bäckvall, J. E. (2004). Modern oxidation methods. Wiley-VCH, Weinheim, 83-118.
[86]           Jeyakumar, K.; Chand, D. K. (2006). Selective oxidation of sulfides to sulfoxides and sulfones at room temperature using H2O2 and a Mo (VI) salt as catalyst, Tetrahedron Letters, 47(27), 4573-4576.
[87]           Al-Hashimi, M., Fisset, E., Sullivan, A. C., & Wilson, J. R. (2006). Selective oxidation of sulfides to sulfoxides using a silica immobilised vanadyl alkyl phosphonate catalyst. Tetrahedron letters47(46), 8017-8019.
[88]           Wu, X. F. (2012). A general and selective zinc-catalyzed oxidation of sulfides to sulfoxides. Tetrahedron letters53(33), 4328-4331.
[89]           Su, W., Chen, J., Wu, H., & Jin, C. (2007). A general and efficient method for the selective synthesis of β-hydroxy sulfides and β-hydroxy sulfoxides catalyzed by gallium (III) triflate. The Journal of organic chemistry72(12), 4524-4527.
[90]           Golchoubian, H., & Hosseinpoor, F. (2007). Effective oxidation of sulfides to sulfoxides with hydrogen peroxide under transition-metal-free conditions. Molecules12(3), 304-311.
[91]           Prakash, G. S., Shakhmin, A., Glinton, K. E., Rao, S., Mathew, T., & Olah, G. A. (2014). Poly (N-vinylpyrrolidone)–H 2 O 2 and poly (4-vinylpyridine)–H 2 O 2 complexes: solid H 2 O 2 equivalents for selective oxidation of sulfides to sulfoxides and ketones to gem-dihydroperoxides. Green Chemistry16(7), 3616-3622.
[92]           Hussain, S., Talukdar, D., Bharadwaj, S. K., & Chaudhuri, M. K. (2012). VO2F (dmpz) 2: a new catalyst for selective oxidation of organic sulfides to sulfoxides with H2O2. Tetrahedron Letters53(48), 6512-6515.
[93]           Kulkarni, A. M., Desai, U. V., Pandit, K. S., Kulkarni, M. A., & Wadgaonkar, P. P. (2014). Nickel ferrite nanoparticles–hydrogen peroxide: a green catalyst-oxidant combination in chemoselective oxidation of thiols to disulfides and sulfides to sulfoxides. RSC Advances4(69), 36702-36707.
[94]           Ghorbani-Choghamarani, A., Mohammadi, M., Tamoradi, T., & Ghadermazi, M. (2019). Covalent immobilization of Co complex on the surface of SBA-15: Green, novel and efficient catalyst for the oxidation of sulfides and synthesis of polyhydroquinoline derivatives in green condition. Polyhedron158, 25-35.
[95]           Kumar, A. (2007). HbA/H2O2: an efficient biomimetic catalytic system for the oxidation of sulfides to sulfoxides. Tetrahedron Letters48(44), 7857-7860.
[96]           Mirzaie, A. (2018). MNPs-supported acidic catalysts in oxidation of sulfides to sulfoxides. Journal of Medicinal and Chemical Sciences, 1(1), 5-8.
[97]           Rostami, A., & Akradi, J. (2010). A highly efficient, green, rapid, and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solvent-free conditions. Tetrahedron Letters51(27), 3501-3503.
[98]           Zolfigol, M. A., Khazaei, A., Safaiee, M., Mokhlesi, M., Rostamian, R., Bagheri, M., ... & Kruger, H. G. (2013). Application of silica vanadic acid as a heterogeneous, selective and highly reusable catalyst for oxidation of sulfides at room temperature. Journal of Molecular Catalysis A: Chemical370, 80-86.
[99]           Shen, H. M., Zhou, W. J., Ma, X., Wu, H. K., Yu, W. B., Ai, N., ... & She, Y. B. (2015). pH-Dependence of the Aqueous Phase Room Temperature Brønsted Acid-Catalyzed Chemoselective Oxidation of Sulfides with H2O2. Molecules20(9), 16709-16722.
[100]       Gazdar, M., & Smiles, S. (1908). CLXXXII.—The interaction of hydrogen dioxide and sulphides. Journal of the Chemical Society, Transactions93, 1833-1836.
[101]       Steinkopf, W., Herold, J., & Stöhr, J. (1920). Über das Thiodiglykolchlorid und einige Abkömmlinge desselben. Berichte der deutschen chemischen Gesellschaft (A and B Series)53(6), 1007-1012.
[102]       Cope, A. C.; Morrison, D. E.; Field, L. J. Am. Chem. Soc. 1950, 72, 59.
[103]       Karrer, P., Scheitlin, E., & Siegrist, H. (1950). Über Homologe des Sulforaphans und über ω‐Aminoalkyl‐sulfoxyde. Helvetica Chimica Acta33(5), 1237-1245.
[104]       Drabowicz, J., & Mikołajczyk, M. (1981). An improved method for oxidation of sulfides to sulfoxides with hydrogen peroxide in methanol. Synthetic Communications11(12), 1025-1030.
[105]       Xu, W. L., Li, Y. Z., Zhang, Q. S., & Zhu, H. S. (2004). A selective, convenient, and efficient conversion of sulfides to sulfoxides. Synthesis2004(02), 227-232.
[106]       Hussain, H., Green, I. R., & Ahmed, I. (2013). Journey describing applications of oxone in synthetic chemistry. Chemical reviews113(5), 3329-3371.
[107]       Greenhalgh, R. P. (1992). Selective oxidation of phenyl sulphides to sulphoxides or sulphones using Oxone® and wet alumina. Synlett1992(03), 235-236.
[108]       Kropp, P. J., Breton, G. W., Fields, J. D., Tung, J. C., & Loomis, B. R. (2000). Surface-Mediated Reactions. 8. Oxidation of Sulfides and Sulfoxides with tert-butyl Hydroperoxide and OXONE1. Journal of the American Chemical Society122(18), 4280-4285.
[109]       Yu, B., Liu, A. H., He, L. N., Li, B., Diao, Z. F., & Li, Y. N. (2012). Catalyst-free approach for solvent-dependent selective oxidation of organic sulfides with oxone. Green Chemistry14(4), 957-962.
[110]       Truce, W. E., Klinger, T. C., Brand, W. W., & Oae, S. (1977). Organic Chemistry of Sulfur. by S. Oae, Plenum Press, New York.
[111]       Ueda, M.; Uchiyama, K.; Kano, T.(1984). Synthesis, 4,323.
[112]       Graybill, B. M. (1967). Synthesis of aryl sulfones. The Journal of Organic Chemistry32(9), 2931-2933.
[113]       Bandgar, B. P., & Kasture, S. P. (2001). Zinc-Mediated Fast Sulfonylation of Aromatics. Synthetic communications31(7), 1065-1068.
[114]       Yang, M., Shen, H., Li, Y., Shen, C., & Zhang, P. (2014). D-Glucosamine as a green ligand for copper catalyzed synthesis of aryl sulfones from aryl halides and sodium sulfinates. RSC Advances4(50), 26295-26300.
[115]       Nara, S. J., Harjani, J. R., & Salunkhe, M. M. (2001). Friedel− Crafts Sulfonylation in 1-Butyl-3-methylimidazolium chloroaluminate ionic liquids. The Journal of organic chemistry66(25), 8616-8620.
[116]       Saidi, O., Marafie, J., Ledger, A. E., Liu, P. M., Mahon, M. F., Kociok-Köhn, G., ... & Frost, C. G. (2011). Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. Journal of the American Chemical Society133(48), 19298-19301.
[117]       Pan, X. J., Gao, J., & Yuan, G. Q. (2015). An efficient electrochemical synthesis of β-keto sulfones from sulfinates and 1, 3-dicarbonyl compounds. Tetrahedron71(34), 5525-5530.
[118]       Chumachenko, N., & Sampson, P. (2006). Synthesis of β-hydroxy sulfones via opening of hydrophilic epoxides with zinc sulfinates in aqueous media. Tetrahedron62(18), 4540-4548.
[119]       Murthy, S. N., Madhav, B., Reddy, V. P., Rao, K. R., & Nageswar, Y. V. D. (2009). An approach toward the synthesis of β-hydroxy sulfones on water. Tetrahedron Letters50(35), 5009-5011.
[120]       Chawla, R., Kapoor, R., Singh, A. K., & Yadav, L. D. S. (2012). A one-pot regioselective synthetic route to vinyl sulfones from terminal epoxides in aqueous media. Green Chemistry14(5), 1308-1313.
[121]       Jin, S. S., Wang, H., & Guo, H. Y. (2013). Ionic liquid catalyzed one-pot synthesis of novel spiro-2-amino-3-phenylsulfonyl-4H-pyran derivatives. Tetrahedron Letters54(19), 2353-2356.
[122]       Durst, T. (1969). Stereospecific hydroxyalkylation of chloromethyl phenyl sulfoxide. Journal of the American Chemical Society91(4), 1034-1035.
[123]       Gokel, G. W., Gerdes, H. M., & Dishong, D. M. (1980). Sulfur heterocycles. 3. Heterogeneous, phase-transfer, and acid-catalyzed potassium permanganate oxidation of sulfides to sulfones and a survey of their carbon-13 nuclear magnetic resonance spectra. The Journal of Organic Chemistry45(18), 3634-3639.
[124]       Ali, M. H., & Bohnert, G. J. (1998). A facile and selective procedure for oxidation of sulfides to sulfoxides with molecular bromine on hydrated silica gel in dichloromethane. Synthesis1998(09), 1238-1240.
[125]       Fukuda, N., & Ikemoto, T. (2010). Imide-catalyzed oxidation system: Sulfides to sulfoxides and sulfones. The Journal of organic chemistry75(13), 4629-4631.
[126]       Irfan, M., Glasnov, T. N., & Kappe, C. O. (2011). Continuous flow ozonolysis in a laboratory scale reactor. Organic letters13(5), 984-987.
[127]       Schumacher, D. P., Clark, J. E., Murphy, B. L., & Fischer, P. A. (1990). An efficient synthesis of florfenicol. The Journal of Organic Chemistry55(18), 5291-5294.
[128]       Kaptein, B., van Dooren, T. J., Boesten, W. H., Sonke, T., Duchateau, A. L., Broxterman, Q. B., & Kamphuis, J. (1998). Synthesis of 4-sulfur-substituted (2 S, 3 R)-3-phenylserines by enzymatic resolution. Enantiopure precursors for thiamphenicol and florfenicol. Organic Process Research & Development2(1), 10-17.
[129]       Harrak, Y., Casula, G., Basset, J., Rosell, G., Plescia, S., Raffa, D., ... & Pujol, M. D. (2010). Synthesis, anti-inflammatory activity, and in vitro antitumor effect of a novel class of cyclooxygenase inhibitors: 4-(Aryloyl) phenyl methyl sulfones. Journal of medicinal chemistry53(18), 6560-6571.
[130]       Mandal, M., &Chakraborty, D. (2015). Kinetic investigation on the highly efficient and selective oxidation of sulfides to sulfoxides and sulfones with t-BuOOH catalyzed by La 2 O 3. RSC Advances5(16), 12111-12122.
[131]       Therien, M., Gauthier, J. Y., Leblanc, Y., Leger, S., Perrier, H., Prasit, P., & Wang, Z. (2001). Synthesis of Rofecoxib,(MK 0966, Vioxx® 4-(4′-Methylsulfonylphenyl)-3-Phenyl-2 (5H)-Furanone), a Selective and Orally Active Inhibitor of Cyclooxygenase-2. Synthesis2001(12), 1778-1779.
[132]       Qian, W., & Pei, L. (2006). Efficient and highly selective oxidation of sulfides to sulfoxides in the presence of an ionic liquid containing hypervalent iodine. Synlett2006(05), 0709-0712.
[133]       Barton, D. H., Li, W., & Smith, J. A. (1998). Binuclear manganese complexes as catalysts in the selective and efficient oxidation of sulfides to sulfones. Tetrahedron letters39(39), 7055-7058.
[134]       Xu, L., Cheng, J., & Trudell, M. L. (2003). Chromium (VI) oxide catalyzed oxidation of sulfides to sulfones with periodic acid. The Journal of organic chemistry68(13), 5388-5391.
[135]       Moghadam, M., Tangestaninejad, S., Mirkhani, V., Mohammadpoor-Baltork, I., & Abbasi-Larki, A. A. (2008). Biomimetic oxidation of sulfides with sodium periodate catalyzed by polystyrene-bound manganese (III) tetrapyridylporphyrin. Applied Catalysis A: General349(1-2), 177-181.
[136]       Boruah, J. J., Das, S. P., Ankireddy, S. R., Gogoi, S. R., & Islam, N. S. (2013). Merrifield resin supported peroxomolybdenum (VI) compounds: recoverable heterogeneous catalysts for the efficient, selective and mild oxidation of organic sulfides with H 2 O 2. Green Chemistry15(10), 2944-2959.
[137]       Zhao, W., Yang, C., Cheng, Z., & Zhang, Z. (2016). A reusable catalytic system for sulfide oxidation and epoxidation of allylic alcohols in water catalyzed by poly (dimethyl diallyl) ammonium/polyoxometalate. Green Chemistry18(4), 995-998.
[138]       Jin, C. K., Yamada, Y., & Uozumi, Y. (2010). Chemoselective Oxidation of Sulfides Promoted by a Tightly Convoluted Polypyridinium Phosphotungstate Catalyst with H 2 O 2. Bulletin of the Korean Chemical Society31(3), 547-548.
[139]       Alonso, D. A., Nájera, C., & Varea, M. (2002). Simple, economical and environmentally friendly sulfone synthesis. Tetrahedron letters43(19), 3459-3461.
[140]       Voutyritsa, E., Triandafillidi, I., & Kokotos, C. G. (2017). Green Organocatalytic Oxidation of Sulfides to Sulfoxides and Sulfones. Synthesis49(04), 917-924.
[141]       Doherty, S., Knight, J. G., Carroll, M. A., Ellison, J. R., Hobson, S. J., Stevens, S., ... & Goodrich, P. (2015). Efficient and selective hydrogen peroxide-mediated oxidation of sulfides in batch and segmented and continuous flow using a peroxometalate-based polymer immobilised ionic liquid phase catalyst. Green Chemistry17(3), 1559-1571.
[142]       Karmee, S. K., Greiner, L., Kraynov, A., Müller, T. E., Niemeijer, B., & Leitner, W. (2010). Nanoparticle catalysed oxidation of sulfides to sulfones by in situ generated H 2 O 2 in supercritical carbon dioxide/water biphasic medium. Chemical Communications46(36), 6705-6707.
[143]       Das, S. P., Boruah, J. J., Sharma, N., & Islam, N. S. (2012). New polymer-immobilized peroxotungsten compound as an efficient catalyst for selective and mild oxidation of sulfides by hydrogen peroxide. Journal of Molecular Catalysis A: Chemical356, 36-45.
[144]       Maleki, B., Hemmati, S., Sedrpoushan, A., Ashrafi, S. S., & Veisi, H. (2014). Selective synthesis of sulfoxides and sulfones from sulfides using silica bromide as the heterogeneous promoter and hydrogen peroxide as the terminal oxidant. RSC Advances4(76), 40505-40510.
[145]       Kirihara, M., Itou, A., Noguchi, T., & Yamamoto, J. (2010). Tantalum carbide or niobium carbide catalyzed oxidation of sulfides with hydrogen peroxide: highly efficient and chemoselective syntheses of sulfoxides and sulfones. Synlett2010(10), 1557-1561.
[146]       Bahrami, K., Khodaei, M. M., & Sohrabnezhad, S. (2011). Cyanuric chloride as promoter for the oxidation of sulfides and deoxygenation of sulfoxides. Tetrahedron letters52(48), 6420-6423.
[147]       Hussain, S., Bharadwaj, S. K., Pandey, R., & Chaudhuri, M. K. (2009). Borax‐Catalyzed and pH‐Controlled Selective Oxidation of Organic Sulfides by H2O2: An Environmentally Clean Protocol. European Journal of Organic Chemistry2009(20), 3319-3322.
[148]       Shaabani, A., & Rezayan, A. H. (2007). Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H2O2. Catalysis Communications8(7), 1112-1116.
[149]       Al-Maksoud, W., Daniele, S., & Sorokin, A. B. (2008). Practical oxidation of sulfides to sulfones by H 2 O 2 catalysed by titanium catalyst. Green Chemistry10(4), 447-451.
[150]       Jafari, H., Rostami, A., Ahmad-Jangi, F., & Ghorbani-Choghamarani, A. (2012). Sulfamic Acid–Catalyzed Oxidation of Sulfides to Sulfoxides and Sulfones Using H2O2: Green and Chemoselective Method. Synthetic Communications42(21), 3150-3156.
[151]       Jereb, M. (2012). Highly atom-economic, catalyst-and solvent-free oxidation of sulfides into sulfones using 30% aqueous H 2 O 2. Green Chemistry14(11), 3047-3052.
[152]       Ahammed, S., Kundu, D., Siddiqui, M. N., & Ranu, B. C. (2015). Metal and solvent free selective oxidation of sulfides to sulfone using bifunctional ionic liquid [pmim] IO4. Tetrahedron letters56(2), 335-337.
[153]       Webb, K. S. (1994). A mild, inexpensive and practical oxidation of sulfides. Tetrahedron letters35(21), 3457-3460.
[154]       Hirano, M., Tomaru, J. I., & Morimoto, T. (1991). A Facile Synthesis of Sulfones by the Oxidation of Various Sulfides with Oxone in Aprotic Solvent in the Presence of “Wet-Montmorillonite”. Chemistry letters20(3), 523-524.
[155]       Cravotto, G., Garella, D., Carnaroglio, D., Gaudino, E. C., & Rosati, O. (2012). Solvent-free chemoselective oxidation of thioethers and thiophenes by mechanical milling. Chemical Communications48(95), 11632-11634.
[156]       Kupwade, R. V., Khot, S. S., Lad, U. P., Desai, U. V., & Wadgaonkar, P. P. (2017). Catalyst-free oxidation of sulfides to sulfoxides and diethylamine catalyzed oxidation of sulfides to sulfones using Oxone as an oxidant. Research on Chemical Intermediates43(12), 6875-6888.