Scopus     h-index: 24

Document Type : Review Article


1 Department of Chemistry, Velammal Engineering College, Chennai, India

2 Department of Chemistry, Vel Tech Rangarajan Dr. Sakunthala R&D Institute of science&Technology, Avadi, Chennai, India

3 Department of Chemistry, R.M.K. Engineering College,Kavaraipettai, Chennai, India

4 Department of Bioinformatics, Pathfinder Research and Training Foundation, Gr. Noida, India

5 Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India


The development of diagnostic nanostents, which blend stent design with nanotechnology to offer multipurpose capabilities, has greatly revolutionized medical diagnostics. Blood vessels can receive structural support and we have real-time diagnosis data from these state-of-art devices. To enhance the precision and efficacy of cardiovascular therapy, diagnostic nanostents are devices that incorporate imaging and diagnostic-oriented nanoparticles. Imaging agents, such as nanoparticles that respond to various imaging modalities, are included in medical imaging procedures to improve the visualization of blood vessels and surrounding tissues. Better diagnostic accuracy and early problem discovery are made possible for greater visibility. This review explores the potential benefits of diagnostic nanostents, including their dual ability to provide structural support and diagnostic skills. The use of nanomaterials that can enhance contrast makes real-time imaging during medical procedures possible and provides immediate feedback to healthcare professionals. Moreover, diagnostic nanostents advance the ideas of personalized medicine. Preclinical research, clinical trials, and more studies are required to verify the safety, efficacy, and utility of these diagnostic nanostents in medicine, despite their many potential advantages. Because of the interdisciplinary nature of research and the dynamic character of nanomedicine, diagnostic nanostents are positioned as a transformative technology that could completely change medical diagnostics in cardiovascular therapy.

Graphical Abstract

A Review of Diagnostic Nano Stents: Part (I)


Main Subjects

[1]. C.C. Hong, The grand challenge of discovering new cardiovascular drugs, Frontiers in drug discovery, 2022, 2, 1027401. [Crossref], [Google Scholar], [Publisher]
[2]. T. Almas, R. Haider, J. Malik, A. Mehmood, A. Alvi, H. Naz, D.I. Satti, S.M.J. Zaidi, A.K. AlSubai, S. AlNajdi, Nanotechnology in interventional cardiology: A state-of-the-art review, IJC Heart & Vasculature, 2022, 43, 101149. [Crossref], [Google Scholar], [Publisher]
[3]. M. Karimi, H. Zare, A. Bakhshian Nik, N. Yazdani, M. Hamrang, E. Mohamed, P. Sahandi Zangabad, S.M. Moosavi Basri, L. Bakhtiari, M.R. Hamblin, Nanotechnology in diagnosis and treatment of coronary artery disease, Nanomedicine, 2016, 11, 513-530. [Crossref], [Google Scholar], [Publisher]
[4]. S. Sim, N.K. Wong, Nanotechnology and its use in imaging and drug delivery, Biomedical Reports, 2021, 14, 1-9. [Crossref], [Google Scholar], [Publisher]
[5]. Y. Tamura, A. Nomura, N. Kagiyama, A. Mizuno, K. Node, Digitalomics, digital intervention, and designing future: The next frontier in cardiology, Journal of Cardiology, 2023. [Crossref], [Google Scholar], [Publisher]
[6]. a) S.S. Yu, R.A. Ortega, B.W. Reagan, J.A. McPherson, H.J. Sung, T.D. Giorgio, Emerging applications of nanotechnology for the diagnosis and management of vulnerable atherosclerotic plaques, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 620-646. [Crossref], [Google Scholar], [Publisher] b) M.O. Ori, F.M. Ekpan, H.S. Samuel, O.P. Egwuatu, Integration of artificial intelligence in nanomedicine, Eurasian Journal of Science and Technology, 2024, 4, 88-104. [Crossref], [Publisher]
[7]. X. Han, K. Xu, O. Taratula, K. Farsad, Applications of nanoparticles in biomedical imaging, Nanoscale, 2019, 11, 799-819. [Crossref], [Google Scholar], [Publisher]
[8]. S. Deng, J. Gu, Z. Jiang, Y. Cao, F. Mao, Y. Xue, J. Wang, K. Dai, L. Qin, K. Liu, Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer, Journal of Nanobiotechnology, 2022, 20, 415. [Crossref], [Google Scholar], [Publisher]
[9]. Y. Kumar, A. Koul, R. Singla, M.F. Ijaz, Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda, Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 8459-8486. [Crossref], [Google Scholar], [Publisher]
[10]. V.F. Schmidt, M. Masthoff, M. Czihal, B. Cucuruz, B. Häberle, R. Brill, W.A. Wohlgemuth, M. Wildgruber, Imaging of peripheral vascular malformations—current concepts and future perspectives, Molecular and Cellular Pediatrics, 2021, 8, 1-18. [Crossref], [Google Scholar], [Publisher]
[11]. H.S. Kim, E.J. Kim, J. Kim, Emerging trends in artificial intelligence-based urological imaging technologies and practical applications, International Neurourology Journal, 2023, 27, S73. [Crossref], [Google Scholar], [Publisher]
[12]. H. Laroui, P. Rakhya, B. Xiao, E. Viennois, D. Merlin, Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders, Digestive and Liver Disease, 2013, 45, 995-1002. [Crossref], [Google Scholar], [Publisher]
[13]. L. Alzoubi, A.A. Aljabali, M.M. Tambuwala, Empowering precision medicine: the impact of 3d printing on personalized therapeutic, AAPS PharmSciTech, 2023, 24, 228. [Crossref], [Google Scholar], [Publisher]
[14]. a) B. Godin, J.H. Sakamoto, R.E. Serda, A. Grattoni, A. Bouamrani, M. Ferrari, Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases, Trends in Pharmacological Sciences, 2010, 31, 199-205. [Crossref], [Google Scholar], [Publisher] b) S. Yadav, M. Sharma, N. Ganesh, S. Srivastava, M.M. Srivastava, Bioactive principle loaded gold nanoparticles as potent anti-melanoma agent: green synthesis, characterization, and in vitro bioefficacy, Asian Journal of Green Chemistry, 2019, 3, 492-507. [Crossref], [Google Scholar], [Publisher]
[15]. Q. Hu, Z. Fang, J. Ge, H. Li, Nanotechnology for cardiovascular diseases, The Innovation, 3, 2022, 100214. [Crossref], [Google Scholar], [Publisher]
[16]. J. Chen, X. Zhang, R. Millican, J. Sherwood, S. Martin, H. Jo, Y.s. Yoon, B.C. Brott, H.W. Jun, Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis, Advanced Drug Delivery Reviews, 2021, 170, 142-199. [Crossref], [Google Scholar], [Publisher]
[17]. A.M. Díez-Pascual, Surface engineering of nanomaterials with polymers, biomolecules, and small ligands for nanomedicine, Materials, 2022, 15, 3251. [Crossref], [Google Scholar], [Publisher]
[18]. L. Yang, J. Wei, Z. Ma, P. Song, J. Ma, Y. Zhao, Z. Huang, M. Zhang, F. Yang, X. Wang, The fabrication of micro/nano structures by laser machining, Nanomaterials, 2019, 9, 1789. [Crossref], [Google Scholar], [Publisher]
[19]. E. Scarcello, D. Lison, Are Fe-based stenting materials biocompatible? A critical review of in vitro and in vivo studies, Journal of Functional Biomaterials, 2019, 11, 2. [Crossref], [Google Scholar], [Publisher]
[20]. E.S.o.R.c.m. org, Medical imaging in personalised medicine: A white paper of the research committee of the European Society of Radiology (ESR), Insights into imaging, 2015, 6, 141-155. [Crossref], [Google Scholar], [Publisher]
[21]. C. Pan, Y. Han, J. Lu, Structural design of vascular stents: A review, Micromachines, 2021, 12, 770. [Crossref], [Google Scholar], [Publisher]
[22]. E. Dordoni, L. Petrini, W. Wu, F. Migliavacca, G. Dubini, G. Pennati, Computational modeling to predict fatigue behavior of NiTi stents: what do we need?, Journal of Functional Biomaterials, 2015, 6, 299-317. [Crossref], [Google Scholar], [Publisher]
[23]. H. Omidian, N. Babanejad, L.X. Cubeddu, Nanosystems in cardiovascular medicine: advancements, applications, and future perspectives, Pharmaceutics, 2023, 15, 1935. [Crossref], [Google Scholar], [Publisher]
[24]. S.C. Pillai, A. Borah, E.M. Jacob, D.S. Kumar, Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis, Drug Delivery, 2021, 28, 550-568. [Crossref], [Google Scholar], [Publisher]
[25]. S. Bonnet, G. Prévot, S. Mornet, M.-J. Jacobin-Valat, Y. Mousli, A. Hemadou, M. Duttine, A. Trotier, S. Sanchez, M. Duonor-Cérutti, A nano-emulsion platform functionalized with a fully human scfv-fc antibody for atheroma targeting: Towards a theranostic approach to atherosclerosis, International Journal of Molecular Sciences, 2021, 22, 5188. [Crossref], [Google Scholar], [Publisher]
[26]. M. Kim, A. Sahu, Y. Hwang, G.B. Kim, G.H. Nam, I.-S. Kim, I.C. Kwon, G. Tae, Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E−/-mice, Biomaterials, 2020, 226, 119550. [Crossref], [Google Scholar], [Publisher]
[27]. M. de Castro Leão, A.R. Pohlmann, A.d.C.S. Alves, S.H.P. Farsky, M.K. Uchiyama, K. Araki, S. Sandri, S.S. Guterres, I.A. Castro, Docosahexaenoic acid nanoencapsulated with anti-PECAM-1 as co-therapy for atherosclerosis regression, European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 99-107. [Crossref], [Google Scholar], [Publisher]
[28]. B. Mog, C. Asase, A. Chaplin, H. Gao, S. Rajagopalan, A. Maiseyeu, Nano-antagonist alleviates inflammation and allows for MRI of atherosclerosis, Nanotheranostics, 2019, 3, 342. [Crossref], [Google Scholar], [Publisher]
[29]. X. Ji, Y. Meng, Q. Wang, T. Tong, Z. Liu, J. Lin, B. Li, Y. Wei, X. You, Y. Lei, Cysteine-based redox-responsive nanoparticles for fibroblast-targeted drug delivery in the treatment of myocardial infarction, ACS Nano, 2023, 17, 5421-5434. [Crossref], [Google Scholar], [Publisher]  
[30]. A. Wijaya, A. Maruf, W. Wu, G. Wang, Recent advances in micro-and nano-bubbles for atherosclerosis applications, Biomaterials Science, 2020, 8, 4920-4939. [Crossref], [Google Scholar], [Publisher]  
[31]. Y. Song, H. Jing, L.B. Vong, J. Wang, N. Li, Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis, Chinese Chemical Letters, 2022, 33, 1705-1717. [Crossref], [Google Scholar], [Publisher]
[32]. Y. Wang, K. Zhang, T. Li, A. Maruf, X. Qin, L. Luo, Y. Zhong, J. Qiu, S. McGinty, G. Pontrelli, Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications, Theranostics, 2021, 11, 164. [Crossref], [Google Scholar], [Publisher]
[33]. M. Yin, J. Lin, M. Yang, C. Li, P. Wu, J. Zou, Y. Jiang, J. Shao, Platelet membrane-cloaked selenium/ginsenoside Rb1 nanosystem as biomimetic reactor for atherosclerosis therapy, Colloids and Surfaces B: Biointerfaces, 2022, 214, 112464. [Crossref], [Google Scholar], [Publisher]
[34]. C.A. Umscheid, D.J. Margolis, C.E. Grossman, Key concepts of clinical trials: A narrative review, Postgraduate Medicine, 2011, 123, 194-204. [Crossref], [Google Scholar], [Publisher]
[35]. F. Abaszadeh, M.H. Ashoub, G. Khajouie, M. Amiri, Nanotechnology development in surgical applications: recent trends and developments, European Journal of Medical Research, 2023, 28, 537. [Crossref], [Google Scholar], [Publisher]
[36]. S. Malik, K. Muhammad, Y. Waheed, Nanotechnology: A revolution in modern industry, Molecules, 2023, 28, 661. [Crossref], [Google Scholar], [Publisher]
[37]. M. Zelzer, R.V. Ulijn, Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality, Chemical Society Reviews, 2010, 39, 3351-3357. [Crossref], [Google Scholar], [Publisher]
[38]. A.C. Anselmo, S. Mitragotri, Nanoparticles in the clinic: An update, Bioengineering & Translational Medicine, 2019, 4, e10143. [Crossref], [Google Scholar], [Publisher]
[39]. D. Rickerby, M. Morrison, Nanotechnology and the environment: A European perspective, Science and Technology of Advanced Materials, 2007, 8, 19. [Crossref], [Google Scholar], [Publisher]
[40]. B. Bhushan, Introduction to nanotechnology, Springer handbook of nanotechnology, 2017, 1-19. [Crossref], [Google Scholar], [Publisher]  
[41]. W. Abdussalam-Mohammed, Review of therapeutic applications of nanotechnology in medicine field and its side effects, Journal of Chemical Reviews, 2019, 1, 243-251. [Crossref], [Google Scholar], [Publisher]
[42]. S.E. McNeil, Nanotechnology for the biologist, Journal of leukocyte biology, 2005, 78, 585-594. [Crossref], [Google Scholar], [Publisher]
[43]. A. Mohamed Sikkander, N. Shawl Nasri, Review on inorganic nano crystals unique benchmark of nanotechnology, Moroccan Journal of Chemistry, 2013, 1, 47-54. [Crossref], [Google Scholar], [Publisher]
[44]. J. Schulte, Nanotechnology: global strategies, industry trends and applications, John Wiley & Sons, 2005. [Google Scholar], [Publisher]
[45]. a) M.A. Lemley, Patenting nanotechnology, Stan. L. Rev., 2005, 58, 601. [Google Scholar], [Publisher] b) M. Halimi, M. Nasrabadi, N. Soleamani, N. Rohani, Green, rapid and facile synthesis of silver nanoparticles using extract of Stachys Lavandulifolia Vahl and study of the effect of temperature, time, concentration, and pH parameters, Journal of Applied Organometallic Chemistry, 2022, 1, 207-215. [Crossref], [Google Scholar], [Publisher] c) N. Patil, D. Shinde, P. Patil, Green synthesis of gold nanoparticles using extract of ginger, Neem, Apta, Umber plants and their characterization using XRD, UV-vis spectrophotometer, Journal of Applied Organometallic Chemistry, 2023, 3, 1-12. . [Crossref], [Google Scholar], [Publisher]
[46]. F. Salamanca-Buentello, D.L. Persad, E.B. Court, D.K. Martin, A.S. Daar, P.A. Singer, Nanotechnology and the developing world, PLoS Medicine, 2005, 2, e97. [Crossref], [Google Scholar], [Publisher]
[47]. M.C. Roco, The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years, Springer, 2011, 13, 427-445. [Crossref], [Google Scholar], [Publisher]
[48]. N.A. Singh, Nanotechnology innovations, industrial applications and patents, Environmental Chemistry Letters, 2017, 15, 185-191. [Crossref], [Google Scholar], [Publisher]
[49]. M.S. El Naschie, Nanotechnology for the developing world, Chaos, Solitons & Fractals, 2006, 30, 769-773. [Crossref], [Google Scholar], [Publisher]
[50]. A.M. Waldron, D. Spencer, C.A. Batt, The current state of public understanding of nanotechnology, Journal of Nanoparticle Research, 2006, 8, 569-575. [Crossref], [Google Scholar], [Publisher]
[51]. J. Hulla, S. Sahu, A. Hayes, Nanotechnology: History and future, Human & Experimental Toxicology, 2015, 34, 1318-1321. [Crossref], [Google Scholar], [Publisher]
[52]. Z. Ullah, Nanotechnology and its impact on modern computer, Global Journal of Researches in Engineering General Engineering, 2012, 12, 34-38. [Crossref], [Google Scholar]
[53]. H.M. Saleh, A.I. Hassan, Synthesis and characterization of nanomaterials for application in cost-effective electrochemical devices, Sustainability, 2023, 15, 10891. [Crossref], [Google Scholar], [Publisher]
[54]. L. Zhang, M. Li, Q. Lyu, J. Zhu, Bioinspired structural color nanocomposites with healable capability, Polymer Chemistry, 2020, 11, 6413-6422. [Crossref], [Google Scholar], [Publisher]
[55]. C. Lu, R. Fang, X. Chen, Single‐atom catalytic materials for advanced battery systems, Advanced Materials, 2020, 32, 1906548. [Crossref], [Google Scholar], [Publisher]
[56]. J. Zhao, A.F. Burke, Electrochemical capacitors: Materials, technologies and performance, Energy Storage Materials, 2021, 36, 31-55. [Crossref], [Google Scholar], [Publisher]
[57]. K.D. Verma, P. Sinha, S. Banerjee, K.K. Kar, Characteristics of electrode materials for supercapacitors, Handbook of Nanocomposite Supercapacitor Materials I: Characteristics, Springer, 2020, 269-285. [Crossref], [Google Scholar], [Publisher]
[58]. P. Forouzandeh, S.C. Pillai, Two-dimensional (2D) electrode materials for supercapacitors, Materials Today: Proceedings, 2021, 41, 498-505. [Crossref], [Google Scholar], [Publisher]
[59]. S. Kim, Y.M. Lee, Two-dimensional nanosheets and membranes for their emerging technologies, Current Opinion in Chemical Engineering, 2023, 39, 100893. [Crossref], [Google Scholar], [Publisher]
[60]. D. Tyagi, H. Wang, W. Huang, L. Hu, Y. Tang, Z. Guo, Z. Ouyang, H. Zhang, Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications, Nanoscale, 2020, 12, 3535-3559. [Crossref], [Google Scholar], [Publisher]
[61]. H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K.S. Kim, A.K. Yetisen, S.H. Yun, W. Kwon, Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications, Advanced Materials, 2018, 30, 1701460. [Crossref], [Google Scholar], [Publisher]  
[62]. Y. Yang, S. Liu, X. Bian, J. Feng, Y. An, C. Yuan, Morphology-and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode, ACS Nano, 2018, 12, 2900-2908. [Crossref], [Google Scholar], [Publisher]
[63]. O.D. Salahdin, H. Sayadi, R. Solanki, R.M.R. Parra, M. Al-Thamir, A.T. Jalil, S.E. Izzat, A.T. Hammid, L.A.B. Arenas, E. Kianfar, Graphene and carbon structures and nanomaterials for energy storage, Applied Physics A, 2022, 128, 703. [Crossref], [Google Scholar], [Publisher]
[64]. Z. Lu, J. Zhu, D. Sim, W. Shi, Y.Y. Tay, J. Ma, H.H. Hng, Q. Yan, In situ growth of Si nanowires on graphene sheets for Li-ion storage, Electrochimica Acta, 2012, 74, 176-181. [Crossref], [Google Scholar], [Publisher]
[65]. Q. Dong, H. Ryu, Y. Lei, Metal oxide based non-enzymatic electrochemical sensors for glucose detection, Electrochimica Acta, 2021, 370, 137744. [Crossref], [Google Scholar], [Publisher]
[66]. C. Li, H. Wu, S. Hong, Y. Wang, N. Song, Z. Han, H. Dong, 0D/2D heterojunction constructed by high-dispersity Mo-doped Ni2P nanodots supported on g-C3N4 nanosheets towards enhanced photocatalytic H2 evolution activity, International Journal of Hydrogen Energy, 2020, 45, 22556-22566. [Crossref], [Google Scholar], [Publisher]
[67]. X. Jin, T.H. Gu, K.G. Lee, M.J. Kim, M.S. Islam, S.J. Hwang, Unique advantages of 2D inorganic nanosheets in exploring high-performance electrocatalysts: synthesis, application, and perspective, Coordination Chemistry Reviews, 2020, 415, 213280. [Crossref], [Google Scholar], [Publisher]
[68]. C. Zhang, M. Chen, Y. Pan, Y. Li, K. Wang, J. Yuan, Y. Sun, Q. Zhang, Carbon nanodots memristor: An emerging candidate toward artificial biosynapse and human sensory perception system, Advanced Science, 2023, 2207229. [Crossref], [Google Scholar], [Publisher]
[69]. A.S. Rasal, S. Yadav, A. Yadav, A.A. Kashale, S.T. Manjunatha, A. Altaee, J.-Y. Chang, Carbon quantum dots for energy applications: A review, ACS Applied Nano Materials, 2021, 4, 6515-6541. [Crossref], [Google Scholar], [Publisher]
[70]. B. Baruah, A. Kumar, Platinum-free anode electrocatalysts for methanol oxidation in direct methanol fuel cells, ceramic and specialty electrolytes for energy storage devices, CRC Press, 2021, 261-283. [Google Scholar], [Publisher]
[71]. A.S. Raikar, S. Priya, S.P. Bhilegaonkar, S.N. Somnache, D.M. Kalaskar, Surface engineering of bioactive coatings for improved stent hemocompatibility: A comprehensive review, Materials, 2023, 16, 6940. [Crossref], [Google Scholar], [Publisher]
[72]. O. Ozkan, J. Odabası, U. Ozcan, Expected treatment benefits of percutaneous transluminal coronary angioplasty: the patient’s perspective, The International Journal of Cardiovascular Imaging, 2008, 24, 567–575. [Crossref], [Google Scholar], [Publisher]
[73]. B.E. Claessen, J.P. Henriques, F.A. Jaffer, R. Mehran, J.J. Piek, G.D. Dangas, Stent thrombosis: A clinical perspective, JACC: Cardiovascular Interventions, 2014, 7, 1081-1092. [Google Scholar], [Publisher]
[74]. F. Alfonso, R.A. Byrne, F. Rivero, A. Kastrati, Current treatment of in-stent restenosis, Journal of the American College of Cardiology, 2014, 63, 2659-2673. [Google Scholar], [Publisher]
[75]. B. Thierry, F.M. Winnik, Y. Merhi, J. Silver, M. Tabrizian, Bioactive coatings of endovascular stents based on polyelectrolyte multilayers, Biomacromolecules, 2003, 4, 1564-1571. [Crossref], [Google Scholar], [Publisher]
[76]. R. Wessely, A. Schömig, A. Kastrati, Sirolimus and paclitaxel on polymer-based drug-eluting stents: similar but different, Journal of the American College of Cardiology, 2006, 47, 708-714. [Google Scholar], [Publisher]  
[77]. Y. Shen, X. Yu, J. Cui, F. Yu, M. Liu, Y. Chen, J. Wu, B. Sun, X. Mo, Development of biodegradable polymeric stents for the treatment of cardiovascular diseases, Biomolecules, 2022, 12, 1245. [Crossref], [Google Scholar], [Publisher]
[78]. S. Garg, P. Serruys, Biodegradable stents and non-biodegradable stents, Minerva Cardioangiologica, 2009, 57, 537-565. [Google Scholar], [Publisher]
[79]. G.D. Boon, An overview of hemostasis, Toxicologic Pathology, 1993, 21, 170-179. [Crossref], [Google Scholar], [Publisher]
[80]. H. Andersen, D.L. Greenberg, K. Fujikawa, W. Xu, D.W. Chung, E.W. Davie, Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity, Proceedings of the National Academy of Sciences, 1999, 96, 11189-11193. [Crossref], [Google Scholar], [Publisher]
[81]. S. Mohammad, W. Anderson, J. Smith, H. Chuang, R. Mason, Effects of heparin on platelet aggregation and release and thromboxane A2 production, The American Journal of Pathology, 1981, 104, 132. [Google Scholar], [Publisher]
[82]. S.R. Steinhubl, D.J. Moliterno, The role of the platelet in the pathogenesis of atherothrombosis, American Journal of Cardiovascular Drugs, 2005, 5, 399-408. [Crossref], [Google Scholar], [Publisher]
[83]. M. Kalafatis, J.O. Egan, C. van't Veer, K.M. Cawthern, K.G. Mann, The regulation of clotting factors, Critical Reviews in Eukaryotic Gene Expression, 1997, 7, 241–280. [Google Scholar], [Publisher]
[84]. I.S. Wright, The nomenclature of blood clotting factors, Thrombosis and Haemostasis, 1962, 7, 381-388. [Crossref], [Google Scholar], [Publisher]
[85]. K.E. Eilertsen, B. Østerud, Tissue factor:(patho) physiology and cellular biology, Blood Coagulation & Fibrinolysis, 2004, 15, 521-538. [Google Scholar], [Publisher]
[86]. T.F. Lüscher, J. Steffel, F.R. Eberli, M. Joner, G. Nakazawa, F.C. Tanner, R. Virmani, Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications, Circulation, 2007, 115, 1051-1058. [Crossref], [Google Scholar], [Publisher]
[87]. N. Mackman, Triggers, targets and treatments for thrombosis, Nature, 2008, 451, 914-918. [Crossref], [Google Scholar], [Publisher]
[88]. T. Inoue, K. Croce, T. Morooka, M. Sakuma, K. Node, D.I. Simon, Vascular inflammation and repair: Implications for re-endothelialization, restenosis, and stent thrombosis, JACC: Cardiovascular Interventions, 2011, 4, 1057-1066. [Google Scholar], [Publisher]
[89]. T. Gori, A. Polimeni, C. Indolfi, L. Räber, T. Adriaenssens, T. Münzel, Predictors of stent thrombosis and their implications for clinical practice, Nature Reviews Cardiology, 2019, 16, 243-256. [Crossref], [Google Scholar], [Publisher]  
[90]. S. Nishi, Y. Nakayama, H. Ishibashi-Ueda, Y. Okamoto, M. Yoshida, Development of microporous self-expanding stent grafts for treating cerebral aneurysms: designing micropores to control intimal hyperplasia, Journal of Artificial Organs, 2011, 14, 348-356. [Crossref], [Google Scholar], [Publisher]  
[91]. W. Jiang, D. Rutherford, T. Vuong, H. Liu, Nanomaterials for treating cardiovascular diseases: A review. Bioactive Materials, 2017, 2, 185–198. [Crossref], [Google Scholar], [Publisher]
[92]. H. Xu, S. Li, Y.S. Liu, Nanoparticles in the diagnosis and treatment of vascular ageing and related diseases, Signal Transduction and Targeted Therapy, 2022, 7, 231. [Crossref], [Google Scholar], [Publisher]
[93]. J. Estelrich, M.J. Sánchez-Martín, M.A. Busquets, Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents, International Journal of Nanomedicine, 2015, 1727-1741. [Google Scholar], [Publisher]
[94]. K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs, Nanomedicine-challenge and perspectives, Angewandte Chemie International Edition, 2009, 48, 872-897. [Crossref], [Google Scholar], [Publisher]
[95]. A. Yusuf, A.R.Z. Almotairy, H. Henidi, O.Y. Alshehri, M.S. Aldughaim, Nanoparticles as Drug Delivery Systems: A Review of the implication of nanoparticles’ physicochemical properties on responses in biological systems, Polymers, 2023, 15, 1596. [Crossref], [Google Scholar], [Publisher]
[96]. R. Toy, L. Bauer, C. Hoimes, K.B. Ghaghada, E. Karathanasis, Targeted nanotechnology for cancer imaging, Advanced Drug Delivery Reviews, 2014, 76, 79-97. [Crossref], [Google Scholar], [Publisher]
[97]. G. Thenuwara, J. Curtin, F. Tian, Advances in diagnostic tools and therapeutic approaches for gliomas: A comprehensive review, Sensors, 2023, 23, 9842. [Crossref], [Google Scholar], [Publisher]
[98]. L.N. Thwala, S.C. Ndlovu, K.T. Mpofu, M.Y. Lugongolo, P. Mthunzi-Kufa, Nanotechnology-based diagnostics for diseases prevalent in developing countries: Current advances in point-of-care tests, Nanomaterials, 2023, 13, 1247. [Crossref], [Google Scholar], [Publisher]
[99]. M. Chandarana, A. Curtis, C. Hoskins, The use of nanotechnology in cardiovascular disease, Applied Nanoscience, 2018, 8, 1607-1619. [Crossref], [Google Scholar], [Publisher]
[100]. A.S. Raikar, S. Priya, S.P. Bhilegaonkar, S.N. Somnache, D.M. Kalaskar, Surface Engineering of bioactive coatings for improved stent hemocompatibility: A comprehensive review, Materials, 2023, 16, 6940. [Crossref], [Google Scholar], [Publisher]
[101]. Y. Zhang, M. Li, X. Gao, Y. Chen, T. Liu, Nanotechnology in cancer diagnosis: progress, challenges and opportunities, Journal of Hematology & Oncology, 2019, 12, 1-13. [Crossref], [Google Scholar], [Publisher]
[102]. B. Babu, S.A. Stoltz, A. Mittal, S. Pawar, E. Kolanthai, M. Coathup, S. Seal, Inorganic nanoparticles as radiosensitizers for cancer treatment, Nanomaterials, 2023, 13, 2873. [Crossref], [Google Scholar], [Publisher]
[103]. A. Hosny, C. Parmar, J. Quackenbush, L.H. Schwartz, H.J. Aerts, Artificial intelligence in radiology, Nature Reviews Cancer, 2018, 18, 500-510. [Crossref], [Google Scholar], [Publisher]
[104]. O. Adir, M. Poley, G. Chen, S. Froim, N. Krinsky, J. Shklover, J. Shainsky‐Roitman, T. Lammers, A. Schroeder, Integrating artificial intelligence and nanotechnology for precision cancer medicine, Advanced Materials, 2020, 32, 1901989. [Crossref], [Google Scholar], [Publisher]
[105]. S. Malik, K. Muhammad, Y. Waheed, Emerging applications of nanotechnology in healthcare and medicine, Molecules, 2023, 28, 6624. [Crossref], [Google Scholar], [Publisher]
[106]. T. Li, W. Liang, X. Xiao, Y. Qian, Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases, International Journal of Nanomedicine, 2018, 7349-7362. [Google Scholar], [Publisher]
[107]. J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.d.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, Nano based drug delivery systems: recent developments and future prospects, Journal of Nanobiotechnology, 2018, 16, 1-33. [Crossref], [Google Scholar], [Publisher]
[108]. X.Q. Zhang, X. Xu, N. Bertrand, E. Pridgen, A. Swami, O.C. Farokhzad, Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine, Advanced Drug Delivery Reviews, 2012, 64, 1363-1384. [Crossref], [Google Scholar], [Publisher]
[109]. V.C. Thipe, A.R. Karikachery, P. Çakılkaya, U. Farooq, H.H. Genedy, N. Kaeokhamloed, D.-H. Phan, R. Rezwan, G. Tezcan, E. Roger, Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles, Journal of Drug Delivery Science and Technology, 2022, 70, 103256. [Crossref], [Google Scholar], [Publisher]
[110]. M. Swierczewska, G. Liu, S. Lee, X. Chen, High-sensitivity nanosensors for biomarker detection, Chemical Society Reviews, 2012, 41, 2641-2655. [Crossref], [Google Scholar], [Publisher]
[111]. J. Lan, Overview of the application of nanomaterials in the medicaldomain, Contrast Media and Molecular Imaging, 2022, 2022, 3507383. [Crossref], [Google Scholar], [Publisher]
[112]. J.C.K. Ng, D.W.Y. Toong, V. Ow, S.Y. Chaw, H. Toh, P.E.H. Wong, S. Venkatraman, T.T. Chong, L.P. Tan, Y.Y. Huang, Progress in drug-delivery systems in cardiovascular applications: stents, balloons and nanoencapsulation, Nanomedicine, 2022, 17, 325-347. [Crossref], [Google Scholar], [Publisher]
[113]. S. Masuda, K. Nakano, K. Funakoshi, G. Zhao, W. Meng, S. Kimura, T. Matoba, M. Miyagawa, E. Iwata, K. Sunagawa, Imatinib mesylate-incorporated nanoparticle-eluting stent attenuates in-stent neointimal formation in porcine coronary arteries, Journal of Atherosclerosis and Thrombosis, 2011, 18, 1043-1053. [Crossref], [Google Scholar], [Publisher]
[114]. P. Galvin, D. Thompson, K.B. Ryan, A. McCarthy, A.C. Moore, C.S. Burke, M. Dyson, B.D. MacCraith, Y.K. Gun’ko, M.T. Byrne, Nanoparticle-based drug delivery: case studies for cancer and cardiovascular applications, Cellular and Molecular Life Sciences, 2012, 69, 389-404. [Crossref], [Google Scholar], [Publisher]
[115]. D.J. Bharali, S.A. Mousa, Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise, Pharmacology & Therapeutics, 2010, 128, 324-335. [Crossref], [Google Scholar], [Publisher]
[116]. H.K. Sajja, M.P. East, H. Mao, Y.A. Wang, S. Nie, L. Yang, Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect, Current Drug Discovery Technologies, 2009, 6, 43-51. [Google Scholar], [Publisher]
[117]. R. Seigneuric, L. Markey, D. SA Nuyten, C. Dubernet, C. TA Evelo, E. Finot, C. Garrido, From nanotechnology to nanomedicine: applications to cancer research, Current Molecular Medicine, 2010, 10, 640-652. [Google Scholar], [Publisher]
 [118]. S. Bhaskar, F. Tian, T. Stoeger, W. Kreyling, J.M. de la Fuente, V. Grazú, P. Borm, G. Estrada, V. Ntziachristos, D. Razansky, Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging, Particle and Fibre Toxicology, 2010, 7, 1-25. [Crossref], [Google Scholar], [Publisher]
[119]. E. McGrady, S. Conger, S. Blanke, B.J. Landry, Emerging technologies in healthcare: navigating risks, evaluating rewards, Journal of Healthcare Management, 2010, 55, 353-365. [Google Scholar], [Publisher]
[120]. a) A.W. Martinez, E.L. Chaikof, Microfabrication and nanotechnology in stent design, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 256-268. [Crossref], [Google Scholar], [Publisher] b) O. Egwuatu, M. Ori, H. Samuel, F. Ekpan, AI-enabled diagnostics and monitoring in nanomedicine, Eurasian Journal of Science and Technology, 2024, 208-229. [Crossref], [Publisher]
[121]. M.A. Alghamdi, A.N. Fallica, N. Virzì, P. Kesharwani, V. Pittalà, K. Greish, The promise of nanotechnology in personalized medicine, Journal of Personalized Medicine, 2022, 12, 673. [Crossref], [Google Scholar], [Publisher]
[122]. F. Farjadian, A. Ghasemi, O. Gohari, A. Roointan, M. Karimi, M.R. Hamblin, Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities, Nanomedicine, 2019, 14, 93-126. [Crossref], [Google Scholar], [Publisher]
[123]. P. Brami, Q. Fischer, V. Pham, G. Seret, O. Varenne, F. Picard, Evolution of coronary stent platforms: A brief overview of currently used drug-eluting stents, Journal of Clinical Medicine, 2023, 12, 6711. [Crossref], [Google Scholar], [Publisher]