
 

 

2024, Volume 6, Issue 2 

 
115 

 

Journal of Chemical Reviews 

 

*Corresponding Author: Meenakshi Halada Nandakrishnan (meenananda75@gmail.com, meenaparam75@gmail.com) 

 

 

Review Article: A Review of Animal Fat: A Great Source 

for Industrial Applications 

 

Nandhini Dhanavel1,2 , Meenakshi Halada Nandakrishnan1,2,*  

1Center for Incubation, Innovation, Research and Consultancy, Department of Chemistry, Jyothy Institute of Technology, Thataguni, 
Bengaluru-560082, India  
2Visvesvaraya Technological University, Jnana Sangama, Belagavi, Karnataka 590018, India 
 

Use yor device to scan and read the 

article online 

 

 

Citation: N. Dhanavel, M.H. Nandakrishnan*, A Review of Animal Fat: A Great Source for Industrial 

Applications. J. Chem. Rev., 2024, 6(2), 115-137. 

https://doi.org/10.48309/JCR.2024.425819.1276  

 

  

 
Article info:  
Received: 18 November 2023 
Accepted: 10 January 2024 
Available Online: 23 January 2024 
ID:  JCR-2311-1276 
Checked for Plagiarism: Yes 
Language Editor: Dr. Fatimah 
Ramezani 
Editor who Approved Publication: 
Prof. Dr. Ghasem Rezanejade 
Bardajee 
 

 

 

 
Keywords:  
Animal fats, Chemically-modified fat, 

Fatty acid composition, 

Biodegradable, Industrial products 

A B S T R A C T 

Animal fats have the potential to be a valuable resource in various fields due to 
their abundance and renewability. This review is aimed to highlight the potential 
of animal fats for industrial applications. Despite their versatility, the high levels of 
unsaturated fatty acids and instability have limited their usage. Chemical 
modification processes such as epoxidation, esterification, and acetylation are used 
to enhance stability and expand their applicability in various fields. These modified 
animal fats offer a sustainable alternative to petroleum-based products with a 
positive impact on the environment. The usage of animal fats in other industries 
provides more benefits, including reduced dependence on fossil fuels, savings in 
foreign currency, and an improved rural economy with increased job 
opportunities. In addition, the utilization of animal fats in the chemical industry 
can lead to the development of biodegradable products, which have a positive 
impact on the environment. 
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1. Introduction 

usiness Wire, a Berkshire Hathaway 
Company reported on the topic 
“Animal and Marine Fats and Oils 
Market by Product Type, Source, 
Form and Application: Global 

Opportunity Analysis and Industry Forecast, 
2021–2030”. 

In 2020, the market size for animal and marine 
fats and oils was recorded as $222,335.0 
million, and it is projected to grow to 
$516,759.3 million by 2030, representing a 
CAGR of 7.6% from 2021 to 2030. Due to the 
increase in animal fat production, it is 
concerning that the amount of waste from 
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animal fats is also increasing, which can lead to 
environmental pollution [1]. The use of waste 
animal fats in the production of various 
industries other than food industries can 
suppress the food versus product competition, 
which can contribute to reduce food prices and 
avoid food insecurity for vulnerable 
populations [2]. For example, animal fat, 
extracted and purified through the Coctio bone 
broth process, serves as a by-product derived 
from animal bones. It has versatile applications 
and can be supplied to the biodiesel industry as 
a non-edible component for fuel production. In 
addition, the refined animal fat finds utility in 
the food, cosmetics, and pharmaceutical sectors 
[3]. This article highlights the underutilized 
potential of animal fats, which are considered 
waste oils, in various industries such as food 
processing industries (vegetable oil refining 
residues, spent frying oils, and oil rich by-
products) [4], agro-industries (agricultural 
crops such as oil seeds which generates oil-rich 
byproducts) [5], animal rendering industries 
(fat trimming and used cooling oil) [6], and 
pharmaceutical and cosmetic industries 
(residues from oil extracts) [7]. The review 
sheds light on the opportunities for future 
advancement and creativity in diverse domains, 
utilizing the results to discover new and 
innovative applications for raw materials that 
are considered waste. The article emphasizes 
the importance of interdisciplinary research in 
shaping various aspects of society and 
highlights the significance of animal fat sources, 
classifications, production cycles, chemistry, 
potential chemical reactions with fats, available 
fatty acids, and industrial applications in 
bringing out eco-friendly products. 

Finally, industrial applications of animal fats 
are of great interest to bring out eco-friendly 
products which are reviewed with effort. The 
graphical abstract shown the production, 
reactions and their applications of the animal 
fats. 

2. Classifying Oils- An Insight into Different 
Oil Varieties 

Oils are mainly extracted from seeds (plants) 
and fats (animal) sources. Based on their origin, 
composition, and intended use, oils are 

categorized into edible, non-edible, and animal 
fats [8]. (1) Edible oils, extracted from different 
plant-based sources, such as fruits, seeds, and 
nuts, contain essential fatty acids and provide 
many health benefits. Edible oils are suitable 
for human consumption. Examples of edible oils 
include canola oil, coconut oil, vegetable oil, and 
peanut oil. (2) Non-edible oils from plant 
sources are not suitable for human 
consumption as they have a bitter taste, a 
pungent smell, and are toxic. Examples of non-
edible oils include jatropha, castor, and 
pongamia. (3) Animal fats are derived from 
animal sources such as tallow, beef, lard, pork, 
butter, and poultry and are used in baking and 
cooking. 

It is significant to mention that some fats and 
oils can belong to multiple categories based on 
their specific application. For instance, lard can 
be used both as an edible fat for cooking and as 
a non-edible oil in the manufacture of soap and 
other products. 

3. Livestock into Fat- An Enlightenment into 
the Animal Fat Production Cycle 

The animal fat production process is a complex 
and multi-step process that is thoroughly 
explained in the below subsections [8]. 

3.1. Production of milk fats 

Cream and non-fat milk layers are separated 
from milk using a centrifuge or gravity-based 
separator, and then cream is churned by hand 
or using a machine until it becomes solid. This 
creates friction through high agitation of the 
cream, which leads to the fat to separating from 
the buttermilk. The obtained melted fat is called 
butter fat [9-10]. 

3.2. Production of rendered oils 

The process of rendering animal fats into 
greaves involves several key phases. Adipose 
tissues are subjected to the disintegration 
(shredding, grinding, or milling) process to 
break down the tissues into smaller pieces, 
making it easier to extract the oil. These tissues 
are allowed to melt to release the oil. This 
process involves heating the tissues to a high 
temperature, which separates the fat from the 
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solid materials by melting. Finally, 
centrifugation or filtration is to separate oil 
from the solid materials. Separated oil (tallow 
or lard) is then subjected to a clarification (de-
waxing, de-gumming, and de-acidification) 
process to improve its quality. The leftover 
solid materials obtained are called Greaves 
meal. This byproduct can be used in animal feed 
as a protein source [11]. 

3.3. Production of fish oils 

The production of fish oil from fish typically 
involves the following steps. The initial stage is 
to soften the flesh by cooking and remove any 
unwanted impurities or bacteria. This is often 
done by steaming or boiling the fish. The next 
stage is to separate the oil from the fish flesh. 
This is typically done by pressing the fish flesh 
to extract the oil or using solvents to dissolve 
the oil. Once the oil has been separated, it is 
usually subjected to a clarification process to 
remove any remaining impurities. This may 
involve filtering the oil through a series of 
filters or using centrifugation to separate the oil 
from any solid particles. The clarified oil is then 
ready for further processing, such as 
refinement and bottling [12]. 

4. Chemistry behind Animal Fats and Oils 

The presence of fatty acids within fats and oils 
triggers various types of reactions. The most 
common reactions are hydrogenation, 
ozonolysis, transesterification, epoxidation, 
oxidation, hydrolysis, and saponification [13]. 
The detailed chemical reactions are 

demonstrated in Figures 1-6. Hydrogenation 
involves the transfer of hydrogen atoms from 
the H2 gas to the double bonds in the 
unsaturated fatty acids. This leads to the 
formation of single bonds, decreases the 
number of double bonds, and increases the 
saturation degree of the fatty acids. The result 
is a change in the physical and chemical 
properties of the fatty acids, which converts 
their phase from liquid oils into solid fats [14]. 
These hydrogenated fats are used in processed 
foods to increase the life span and also used 
instead of frying oil to withstand the heat and 
can be used longer [15]. Hydrogenated fats 
contribute to the texture and mouthfeel of 
processed foods. Trans fats produced during 
hydrogenation have been linked to increased 
cardiovascular risks [16]. As an alternative, it is 
used for the production of precursors in the 
production of biodiesel and bioplastics in 
recent years [17]. 

Ozonolysis is a chemical process that involves 
the reaction of ozone (O3) with unsaturated 
compounds. This process is utilized for various 
industrial applications, leading to modifications 
in the chemical structure of compounds and 
generating value-added products and 
intermediates. The modifications resulting from 
ozonolysis have specific effects on the 
performance of fats, oils, or other compounds, 
and these effects can vary based on the nature 
of the starting material. Compared to many 
oxidation routes, ozone is produced on site 
eliminating problems related to storage and 
transportation of oxidation agents [18]. 

 

Figure 1. Hydrogenation

https://www.jchemrev.com/article_188241.html
https://www.jchemrev.com/article_188241.html
https://www.jchemrev.com/article_188241.html
https://www.jchemrev.com/article_188241.html
https://www.jchemrev.com/article_188241.html
https://www.jchemrev.com/article_188241.html
https://www.jchemrev.com/article_188241.html


 

 

2024, Volume 6, Issue 2 

 

Journal of Chemical Reviews 

 

 
119 

 

 

Figure 2. Ozonolysis 

 

Figure 3. Transesterification 

Transesterification is a process where the 
animal fats (triglycerides composed of fatty 
acids and glycerol) react with an alcohol 
(methanol or ethanol) to give fatty acid methyl 
or ethyl esters (biodiesel). This process is used 
to produce biodiesel from different feedstocks. 
The primary effect is the conversion of animal 
fats into biodiesel, a more environmentally 
friendly and sustainable fuel alternative. 
Biodiesel has lower viscosity compared to 
animal fats, improving its flow characteristics 
and ease of use [19]. 

The addition of an oxygen atom to the carbon-
carbon double bond present in the fatty acid 
using reagents such as peroxy acids or peracids 
to form epoxide group is known as epoxidation. 
This reaction will modify the physical 
properties of the oil and fats and improve the 
oxidative stability. This modified oil and fats 

can be used in the industries for the production 
of plasticizers, resins, and lubricants [20]. The 
oxidation of fatty acids in fats and oils takes 
place when they are exposed to air, light, or 
heat. They form a variety of by-products like 
aldehydes, carboxylic acids, peroxides, and 
ketones. These by-products have a negative 
impact on the quality or stability of the oil and 
leads to the formation of off-flavors, and 
rancidity. This can be minimized by treating it 
with antioxidants and recently encapsulation 
technologies [21]. Hydrolysis/Saponification 
occurs when fats or oils are exposed to water 
and base, the ester bonds between the fatty 
acids and glycerol are broken down. This 
reaction can result in the formation of sodium 
salts of the particular fatty acids (soap) and 
glycerol. The commercial application in this 
process is the production of soap [22]. 
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Figure 4. Epoxidation 

 

Figure 5. Oxidation 

 

Figure 6. Hydrolysis/Saponification 
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4.1. Fatty acids in animal fats 

Animal fats consist of lipids with a variety of 
fatty acids. Fatty acids serve as the foundational 
elements that differ in their saturation, 
structure, and length. Understanding the 
constituents of fatty acids is significant and 
provides a way to different applications namely 
caproic acid is one of the components in the 
vanilla and cheese and also used as an artificial 
flavor when it is changed into its ester form 
which can be used in food industries [23]. 
Caprylic acid is the saturated one which has the 
antimicrobial properties which is used as an 
antimicrobial agent in pharmaceutical 
industries [24]. Lauric acid which is used as a 
good antibacterial agent because it destroys the 
cell wall and the membrane of the bacteria [25]. 

Using more of myristic acid in the diet, 
immunomodulatory functions are exerted [26]. 
Palmitic acid has been used as the milk 
replacers for the young feeding animals. 
Palmitic and stearic acid has been used in the 
lactating cows to increase the nutritive value in 
its diet and enhance its milk production [27]. 
Oleic acid is mostly present in the animal fats 
which is used to treat the coronary heart 
diseases. Linolenic acid is used as a 
supplementary diet for the animals which itself 
cannot synthesize this fatty acid [28]. Types of 
fatty acids found in animal fats including 
information on their source, chemical name, 
molecular weight, chemical formula, number of 
double bonds, and structure are summarized 
from suitable research articles, as presented in 
Table 1 [29-37].  

 
Table 1. Composition of animal fats: A comprehensive study of fatty acids and their characteristics [29-37] 

 
Fatty 
acids 

Sources Chemical 
name 

Molecular 
weight 

(g mol-1) 

Chemical 
formula 

No. of 
double 
bonds 

Structure 

Caproic 
acid 

Milk fat Hexanoic acid 116.160 C6H12O2 0 

 

Caprylic 
acid 

Goat milk Octanoic acid 144.214 C8H₁₆O₂ 0 

 

Lauric acid 
Cow and 
goat milk 

Dodecanoic 
acid 

200.322 C12H₂₄O₂ 0 

 

Myristic 
acid 

Bovine 
milk, 

butter fat 

Tetradecanoic 
acid 

228.376 C14H28O2 0 

 

Palmitic 
acid 

Ruminant 
tallow 

Hexadecanoic 
acid 

256.430 C16H₃₂O₂ 0 

 

Stearic 
acid 

Pork, 
chicken, 
beef, fish 

Octadecanoic 
acid 

284.484 C18H₃₆O₂ 0 

 

Margaric 
acid 

Fat and 
milk fat of 
ruminants 

Heptadecanoic 
acid 

270.45 C17H₃₄O₂ 0 

 

Arachidic 
acid 

Fish oil Icosanoic acid 316.6 C20H40O2 0 

 

Crotonic 
acid 

Beef and 
dairy fat 

(2E)-But-2-
enoic acid 

86.09 C4H6O2 1 
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Table 1. Continued 

 

Palmitoleic 
acid 

Meat, 
butter, 
cheese, 

milk 

(9Z)-
Hexadec-
9-enoic 

acid 

254.41 C16H30O2 1 

 

Gondoic 
acid 

Fish, beef, 
Dairy 

products 

(11Z)-
Icos-11-

enoic acid 
310.51 C20H₃₈O₂ 1 

 

Myristoleic 
acid 

Milk fat 
from 

ruminants 

(9Z)-
Tetradec-

9-enoic 
acid 

226.36 C14H26O2 1 

 

Oleic acid Pig 

(9Z)-
Octadec-
9-enoic 

acid 

282.46 C18H34O2 1 

 

Elaidic acid 
Dairy fat, 
Beef fat 

(9E)-
Octadec-
9-enoic 

acid 

282.46 C18H34O2 1 

 

Vaccenic 
acid 

Animal 
fats and 
butter 

(11E)-
Octadec-
11-enoic 

acid 

282.46 C18H34O2 1 

 

Gadoleic 
acid 

Cod liver 
oil 

(9Z)-Icos-
9-enoic 

acid 
310.51 C20H38O2 1 

 

Eicosenoic 
acid 

Herring 
fish, Eel, 

Sable fish, 
Salmon, 
Kielbasa 

(11Z)-
Icos-11-

enoic acid 
310.51 C20H38O2 1 
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Table 1. Continued 
 

Erucic acid 

Geese, 
ducks, 

beef 
tallow, 

lard 

(13Z)-Docos-
13-enoic acid 

338.57 C22H42O2 1 

 

Nervonic acid 
Marine 

organism
s 

(15Z)-Tetracos-
15-enoic acid 

366.62 C24H46O2 1 

 

Linoleic acid 
Meat and 

dairy 
products 

(9Z,12Z)-
Octadeca-9,12-

dienoic acid 

280.45
2 

C20H₃₂O₂ 2 

 

Eicosadienoic 
acid 

 

Cat fish, 
turkey, 

chicken, 
egg 

(11Z,14Z)-
Icosa- 11,14-
dienoic acid 

308.50 C20H36O2 2 

 

Docosadienoi
c acid 

 
Fish 

(13Z,16Z)-
Docosa- 13,16-

dienoic acid 
336.55 C22H40O2 2 

 

Linolenic acid 
Meat and 
eggs from 

chicken 

(9Z,12Z,15Z)-
Octadeca-
9,12,15-

trienoic acid 

278.4 C18H30O2 3 

 

Stearidonic 
acid 

Fish oil 

(6Z,9Z,12Z,15Z)
-Octadeca-
6,9,12,15-

tetraenoic acid 

276.42 
C18H₂₈O

₂ 
4 
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4.2. Fatty acid profile analysis of animal fats 

Animal fats contain a spectrum of fatty acids, 
including saturated, monounsaturated, and 
polyunsaturated types. Understanding the fatty 
acid composition in animal fats offers diverse 
practical applications across various domains. 
Ternary plot in Figure 7 illustrates the fatty acid 
composition of different animal fats [38]. The 
composition of fatty acids varies among animal 
fats, influencing their applications. The ternary 
plot provides a visual representation enabling a 
quick assessment of the overall fatty acid 
content. 

5. Applications of Animal Fats 

The modified animal fats produced from the 
various chemical process mentioned in Section 
3 are more stable than the ordinary animal fats 
which can be used in various applications. The 
detailed explanation with recent literature 
survey has been discussed in the upcoming 
subsections. 

5.1. Lubricant 

Lubricants are crucial in all mechanical systems 
and reduce the wear and friction of moving 
parts between metal surfaces. Common 
industrial lubricants include metalworking 
fluids, engine oils, gearbox oils, compressor oils, 
and hydraulic oils. Nearly 50% of petroleum 
lubricants cause permanent damage to the 
environment. This has led to increased demand 
for biodegradable and renewable lubricant 
sources. A variety of oils are converted into 
biodegradable lubricants using methanol [39-
40]. The process of producing biolubricants 
involves various reaction pathways, as shown 
in Figure 8. Properties such as friction and 
wear, oxidation stability, biodegradability, and 
environmental compatibility are important for 
effective performance as a lubricant. Animal 
fats have been found to have the potential to be 
used as biolubricants discussed in the next 
paragraph [41]. 

 

 

Figure 7. Ternary plot of the number of different types of fatty acids in animal fats
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Figure 8. Reaction routes for the preparation of biolubricants 

Lubricant from the chicken fat was obtained by 
physical refining process. 30-40% chicken fat 
was obtained from the poultry waste and 
converted into esters by the transesterification 
process. The esters viscosity is varied using 
oxidative stabilizers and viscosity modifiers 
such as ethyl vinyl acetate (EVA) and styrene 
butadiene styrene (SBS). The tribological 
properties of the samples (pure biodiesel, pure 
chicken fat, and various blends of biodiesel plus 
chicken fat with different compositions of SBS 
and EVA were compared [42]. Omega-3 fatty 
acids were separated from the waste fish oil 
and used in many nutrition products. The 
remaining fatty acids are considered waste and 
used as lubricants, biofuel, and many other 
applications [43]. Fish oil obtained from Nile 
Tilapia is chemically modified by esterification, 
epoxidation, and ring opening reactions. This 
modified fish oil is compared with commercial 
lubricants and it showed high biodegradability 
and viscosity [44]. Duck fat biodiesel used as a 
biolubricant and compared with other 
vegetable oils such as, soybean, olive, coconut, 
palm, and canola [45]. 

5.2. Fuel 

In response to the growing demand for oil, the 
Indian government [46] has passed an order to 

promote the mixing of higher levels of ethanol 
and vegetable oil components with diesel and 
gasoline. Ethanol (10%) blended with gasoline 
has increased from 12% to 15%. For diesel, 
20% of alkyl esters are from long-chain fatty 
acids of oils taken in the upcoming years. This 
move is aimed at reducing the country’s 
dependence on fossil fuels and promoting eco-
friendly alternatives [47] and strategies to 
blend is explained in this article [48]. Rudolph 
Diesel was the first person to use oils in diesel 
engines in 1911. The properties of raw oil are 
same as crude petroleum derived diesel and 
used in diesel engines without any blending. 
However, using the oils led to several 
drawbacks such as more carbon deposits, oil 
ring sticking, injector coking, high fuel viscosity, 
etc. Few of them can be solved, like reducing 
the viscosity by various methods (micro-
emulsification, pyrolysis, dilution, and 
transesterification). Among these methods, 
transesterification is considered the best [49]. 
The biodiesel production by the 
transesterification process is elaborately 
explained in Figure 9 [50-51]. The research 
work from was 2020 to 2023 for the biofuel 
production from different animal fats were 
listed in Figure 10 [52-66]. It is evident from 
figure that utilization of animal fat acts as a key 
source for biodiesel production. 
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Figure 9. Transesterification process for biodiesel production 

 

Figure 10. Review on animal fat sources for biodiesel synthesis from 2020-2023 

5.3. Plasticizer in films 

Plastics have entered in different ways into 
human lifestyle when standard of living gets 
modernized. But concerning the environmental 
account, it causes global pollution due to its 
non-biodegradable nature. If plastics usage 
goes on without limit, it will lead our world into 
a “plastic Earth” [67]. Therefore, there is a need 
to transition to biodegradable products. 
Biodegradable starch has been widely used in 
packaging industry due to its low cost and 

abundance in nature, but it has poor 
hydrophilicity and low extensibility as its 
shortcomings. Other than starch, many 
biodegradable polymers have been used, such 
as chitosan [68], polylactic acid, 
polycaprolactone, etc. To meet the issues, 
plasticizers came into action. The plasticizers 
used were glycerol, esters, and sorbitol. Among 
these plasticizers, glycerol is toxic-free and 
cost-effective. The main criterion for the film to 
get onto the market is that it should be water 
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resistant. To make the film waterproof, oils 
have been used as an additive. 

Several investigations have utilized plant oils in 
film preparation, including soybean oil [69], 
bamboo volatile oil [67], palm oil [70], 
cinnamon oil [71], olive oil [68], and buriti oil 
[72]. These studies employed the solution 
casting technique for the preparation. The basic 
steps involved in the formation of film by 
solution casting technique are pictorially 
demonstrated in Figure 11. Most of the films 
were done with the help of vegetable oil, but 
only few animal fats namely shellac resins from 
Laccifer lacca used as a coating on the surfaces 
of tomatoes [73] and green chilies [74]. 

5.4. Cutting fluid 

The cutting process results in getting the 
desired shape and geometry of the specimen by 
using sharp machining tools. The energy 
required for such an operation is almost 66%, 
and major energy loss happens in the form of 
heat. The heat loss can be minimized by the use 
of metal cutting fluids (MCF) [75]. The MCF 
working is elucidated in Figure 12 [76]. Mineral 

oils were used as MCF which severely reflects 
on the machine operator and the environment. 
The people and the environment exposed to the 
non-biodegradable metal cutting fluids suffer 
from cancer, lung and heart disease, DNA 
damage, skin irritation, and soil contamination 
due to disposal. The role of cutting fluid is to 
increase the life span of the tool by sluicing the 
chips from the cutting zone, reducing the 
thermal deformation of the workpiece, and 
improving the surface finish [77]. 

The reason for using mostly vegetable oils as 
metal cutting fluids is because that they stay in 
liquid form. The properties of the adsorption of 
oil facilitate the adsorption on the surface of the 
friction. This property provides a protective 
layer when undergoing machining operations. 
Not only is it good for lubrication, but it also has 
the properties of biodegradability and non- 
toxicity [78]. Animal fats modified by 
undergoing rendering, steaming, and extracting 
the oil, which is then used for the emulsification 
process. Tallow and lard were explored as 
potential MCF [79]. 

 

 

 

Figure 11. Schematic representation of solution casting technique for film preparation
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Figure 12. Working of metal cutting fluid (MCF) 

5.5. Wound dressing 

Infections delay the progress of wound healing 
and even cause sepsis. Antibacterial wound 
dressings are made to reduce or kill microbes 
during the healing time. The dressings were 
made to be biocompatible, provide moisture 
over the wounded tissues and protect the new 
tissues formed during the healing process from 
external trauma. To lessen the usage of fossil-
based raw materials for polyurethane 
synthesis, bio-based feedstocks like plant oils 
were used [80-81]. Animal fats such as emu oil 
and badger oil themselves cannot be used as 
wound dressing components, so to provide 
support to the composites; they are blended 
with polyurethanes [82-83]. 

In addition, nanoparticles which have 
antimicrobial properties were loaded along 
with the composites [84]. Those mixtures were 
taken in the syringe to undergo the 
electrospinning process as shown in Figure 13 
to form wound dressing material. Various 
essential oils were evaluated their 
antimicrobial properties for wound dressing 
application [85-86].  

5.6. Paints 

In ancient times, the practice of using oils as a 
binder for pigments was followed. The 
Egyptians around 2600 BCE used a mixture of 
oil and pigments to create a creamy paste for

 

Figure 13. Pictorial representation of the electrospun process of wound dressing
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Figure 14. Free fatty acid percentage profile of menhaden (Brevoortia sp.)

inlay work [87]. Linseed oil was the most 
widely used medium for binding the paints in 
Europe, while poppy and walnut oil was more 
expensive options. Fish and marine mammals 
contain ample amounts of oil to utilize by 
coastal communities as paint binders or 
varnishes. However, whale oil has good 
commercial value, so it was used in a limited 
amount [88-89]. In the US, fish oils, particularly 
from menhaden (Brevoortia spp.), became 

heavily exploited due to the abundance 
availability of this silvery fish along the Eastern 
and Atlantic seaboard [90]. Despite being 
considered unappetizing for human 
consumption, menhaden were utilized as bait 
or processed for their oil and used in various 
products such as margarine, soap, and paint 
[91]. The free fatty acid percentage profile of 
the fish menhaden is represented in Figure 14 
[92]. 

 

Figure 15. Applications of various animal fats in cosmetic industry 
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5.7. Cosmetics 
In the cosmetic industry, rendered poultry fat, 
tallow, and lard are widely used. Lard is 
obtained from the rendering of swine adipose 
tissue, while tallow is obtained from the 
rendering of ruminant fat from farm animals 
such as sheep, buffalo, cattle, and goats. These 
rendered fats possess occlusive, emulsion-
stabilizing, emollient, surfactant, and viscosity-
increasing properties. Modern cosmetic 
products utilize fat from various animal species 
are illustrated in Figure 15 [93].  

Animal fats such as emu oil and mink oil have 
penetrating power and easily get inside the 
dermal layers, stimulating hair and skin growth. 
These can be used in making lipsticks, hair 
sprays, moisturizers, body lotions, and skin 
cleansers [94]. Ostrich oil is used in antiaging 
cosmetics because it is rich in oleic acid, lauric 
acid, and palmitic acid [95]. Horse oil has skin 
moisturizing and skin barrier restoration 
properties and is used in making soap, 
shampoo, lotion, and face cream [96]. 

Ambergris wax is a constituent of perfumes that 
prolongs their scent. Sperm oil is used in beauty 
products as a moisturizer and as a vehicle for 
fragrances. Cod liver oil is used as an occlusive 
in skin care products. Shark liver oil is a 
triterpenoid organic compound that 
impressively mimics the skin’s natural oils and 
is used in lip balm, hair dyes, facial 
moisturizers, sunscreen, and moisturizing 
creams. Crocodile oil is rich in oleic acid and Ω-
3, 6 fatty acids. Due to its good healing 
property, it is used in skin care products [97]. 

6. Conclusion 

Based on the overview elucidated, the animal 
fats pave a way for the search of inventing new 
products. This paper mainly focuses on 
ecofriendly and biodegradable things 
discovered recently. Edible oils that are suitable 
for consumption are not favored due to their 
higher cost. However, nonedible animal fats 
have been identified as potential sources for 
various applications. Animal fats have proven 
to be a versatile and indispensable resource in 
automobiles (lubricants, additives in fuels, and 
components in car care products), cosmetics 

(production of soaps, creams, lotions, and other 
beauty and skincare products), food 
(production of margarine, shortening, cooking 
oils, and flavorings), paints (binders, solvents, 
or additives, providing improved performance 
and durability), and pharmaceutical industries 
(pharmaceutical ointments, capsules, and 
coatings for various medicinal products). By 
addressing these specific points, animal fats can 
be recognized as valuable and underutilized 
resources across industries, promoting their 
responsible usage and maximizing their 
economic and practical benefits. 
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