Scopus, ISC, J-Gate, CAS

Document Type : Review Article


1 Center for Incubation, Innovation, Research and Consultancy, Department of Chemistry, Jyothy Institute of Technology, Thataguni, Bengaluru-560082, India

2 Visvesvaraya Technological University, Jnana Sangama, Belagavi, Karnataka 590018, India


Animal fats have the potential to be a valuable resource in various fields due to their abundance and renewability. This review is aimed to highlight the potential of animal fats for industrial applications. Despite their versatility, the high levels of unsaturated fatty acids and instability have limited their usage. Chemical modification processes such as epoxidation, esterification, and acetylation are used to enhance stability and expand their applicability in various fields. These modified animal fats offer a sustainable alternative to petroleum-based products with a positive impact on the environment. The usage of animal fats in other industries provides more benefits, including reduced dependence on fossil fuels, savings in foreign currency, and an improved rural economy with increased job opportunities. In addition, the utilization of animal fats in the chemical industry can lead to the development of biodegradable products, which have a positive impact on the environment.

Graphical Abstract

A Review of Animal Fat: A Great Source for Industrial Applications


Main Subjects

[1]. D. Illakwahhi, B.B. Srivastava, Improving the efficacy of abamectin using Neem Oil in controlling tomato leafminers, Tuta absoluta (Meyrick), Advanced Journal of Chemistry, Section A, 2019, 2, 216-224. [Crossref], [Google Scholar], [Publisher]
[2]. I.B. Banković-Ilić, I.J. Stojković, O.S. Stamenković, V.B. Veljkovic, Y.-T. Hung, Waste animal fats as feedstocks for biodiesel production, Renewable and Sustainable Energy Reviews, 2014, 32, 238–254. [Crossref], [Google Scholar], [Publisher]
[3]. Z. Torabi, S. Saeida Ardekani, S.H. Hataminasab, New model of professional competence of managers of hotels, oil, gas and energy industries toward sustainable development, Advanced Journal of Chemistry, Section A, 2021, 4, 231-243. [Crossref], [Google Scholar], [Publisher]
[4]. I. Smeu, A.A. Dobre, E.M. Cucu, G. Mustățea, N. Belc, E.L. Ungureanu, Byproducts from the vegetable oil industry: The challenges of safety and sustainability, Sustainability, 2022, 14, 2039. [Crossref], [Google Scholar], [Publisher]
[5]. L.M. Reguengo, M.K. Salgaço, K. Sivieri, M.R.M. Júnior, Agro-industrial by-products: Valuable sources of bioactive compounds, Food Research International, 2022, 152, 110871. [Crossref], [Google Scholar], [Publisher]
[6]. D.L. Meeker, C. Hamilton, Essential rendering, All about the animal by-products industry, 2006. [Crossref], [Google Scholar],
[7]. A. Ahmad, H. Ahsan, Lipid-based formulations in cosmeceuticals and biopharmaceuticals, Biomedical Dermatology, 2020, 4, 1-10. [Crossref], [Google Scholar], [Publisher]
[8]. Animal fats and oils, Fats and Oils Handbook, Elsevier, 1998, 121–173. [Crossref], [Publisher]
[9]. R.C. Chandan, Dairy processing and quality assurance: an overview, Dairy Processing and Quality Assurance, 2015, 1-40. [Crossref], [Google Scholar], [Publisher]
[10]. P. Walstra, P. Walstra, J.T. Wouters, T.J. Geurts, Dairy science and technology, CRC Press, 2005. [Crossref], [Google Scholar], [Publisher]
[11]. H. YH, W.R. Robert, A.Y. Owen, Meat science and applications, Marcel Dekker, Inc., 2001. [Crossref], [Google Scholar], [Publisher]
[12]. H.D. Branion, Industrial fishery technology, Poultry Science, 1964, 43, 1383. [Crossref], [Google Scholar], [Publisher]
[13]. N.P. Chauke, H.E. Mukaya, D.B. Nkazi, Chemical modifications of castor oil: A review, Science Progress, 2019, 102, 199-217. [Crossref], [Google Scholar], [Publisher]
[14]. H. Patterson, Hydrogenation of oils and fats, Recent Advances in Chemistry and Technology of Fats and Oils, Springer, 1983, 41-56. [Crossref], [Google Scholar], [Publisher]
[15]. D. Mozaffarian, M.B. Katan, A. Ascherio, M.J. Stampfer, W.C. Willett, Trans fatty acids and cardiovascular disease, New England Journal of Medicine, 2006, 354, 1601-1613. [Crossref], [Google Scholar], [Publisher]
[16]. J.E. Hunter, J. Zhang, P.M. Kris-Etherton, Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review, The American Journal of Clinical Nutrition, 2010, 91, 46-63. [Crossref], [Google Scholar], [Publisher]
[17]. U.P. Laverdura, L. Rossi, F. Ferella, C. Courson, A. Zarli, R. Alhajyoussef, K. Gallucci, Selective catalytic hydrogenation of vegetable oils on lindlar catalyst, ACS Omega, 2020, 5, 22901-22913. [Crossref], [Google Scholar], [Publisher]
[18]. D.K. Arriaga, A.A. Thomas, Capturing primary ozonides for a syn-dihydroxylation of olefins, Nature Chemistry, 2023, 1-5. [Crossref], [Google Scholar], [Publisher]
[19]. G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters, Fuel Processing Technology, 2005, 86, 1059-1070. [Crossref], [Google Scholar], [Publisher]
[20]. a) V.M. Abbasov, F.A. Nasirov, N.S. Rzayeva, L.I. Nasirova, K.Z. Musayeva, Epoxidated vegetable oils: preparation, properties and application, Ppor, 2018, 19, 427. [Google Scholar], [Publisher] b) F.I. Ahmadi, R. Fathollahi, D. Dastan, Phytochemical Constituents and biological properties of Scutellaria Condensata Subsp. Pycnotricha, Journal of Applied Organometallic Chemistry, 2022, 2, 119-128. [Crossref], [Google Scholar], [Publisher]
[21]. M. Machado, L.M. Rodriguez-Alcala, A.M. Gomes, M. Pintado, Vegetable oils oxidation: mechanisms, consequences and protective strategies, Food Reviews International, 2023, 39, 4180-4197. [Crossref], [Google Scholar], [Publisher]
[22]. R. Alenezi, M. Baig, J. Wang, R. Santos, G. Leeke, Continuous flow hydrolysis of sunflower oil for biodiesel, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 32, 460-468. [Crossref], [Google Scholar], [Publisher]
[23]. S. Agnihotri, D.M. Yin, A. Mahboubi, T. Sapmaz, S. Varjani, W. Qiao, D.Y. Koseoglu-Imer, M.J. Taherzadeh, A glimpse of the world of volatile fatty acids production and application: A review, Bioengineered, 2022, 13, 1249-1275. [Crossref], [Google Scholar], [Publisher]
[24]. Y. Li, The application of caprylic acid in downstream processing of monoclonal antibodies, Protein Expression and Purification, 2019, 153, 92-96. [Crossref], [Google Scholar], [Publisher]
[25]. R. Barlina, K.T. Dewandari, I. Mulyawanti, T. Herawan, Chemistry and composition of coconut oil and its biological activities,  Multiple Biological Activities of Unconventional Seed Oils, Elsevier, 2022, 383-395. [Crossref], [Google Scholar], [Publisher]
[26]. S. Verruck, C.F. Balthazar, R.S. Rocha, R. Silva, E.A. Esmerino, T.C. Pimentel, M.Q. Freitas, M.C. Silva, A.G. da Cruz, E.S. Prudencio, Dairy foods and positive impact on the consumer's health, Advances in Food and Nutrition Research, 2019, 89, 95-164. [Crossref], [Google Scholar], [Publisher]
[27]. J. Loften, J. Linn, J. Drackley, T. Jenkins, C. Soderholm, A. Kertz, Invited review: Palmitic and stearic acid metabolism in lactating dairy cows, Journal of Dairy Science, 2014, 97, 4661-4674. [Crossref], [Google Scholar], [Publisher]
[28]. Fatty acids, fat, volatile fatty acids, and energy, Horse Feeding and Nutrition, Elsevier, 1991, 193–209. [Crossref], [Publisher]
[29]. L. Lin, Z. Cunshan, S. Vittayapadung, S. Xiangqian, D. Mingdong, Opportunities and challenges for biodiesel fuel, Applied energy, 2011, 88, 1020-1031. [Crossref], [Google Scholar], [Publisher]
[30]. R. Misra, M. Murthy, Straight vegetable oils usage in a compression ignition engine—A review, Renewable and Sustainable Energy Reviews, 2010, 14, 3005-3013. [Crossref], [Google Scholar], [Publisher]
[31]. S. Singh, D. Singh, Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review, Renewable and sustainable energy reviews, 2010, 14, 200-216. [Crossref], [Google Scholar], [Publisher]
[32]. A. Srivastava, R. Prasad, Triglycerides-based diesel fuels, Renewable and Sustainable Energy Reviews, 2000, 4, 111-133. [Crossref], [Google Scholar], [Publisher]
[33]. J.C. Juan, D.A. Kartika, T.Y. Wu, T.-Y.Y. Hin, Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: an overview, Bioresource Technology, 2011, 102, 452-460. [Crossref], [Google Scholar], [Publisher]
[34]. Y. Sharma, B. Singh, S. Upadhyay, Advancements in development and characterization of biodiesel: A review, Fuel, 2008, 87, 2355-2373. [Crossref], [Google Scholar], [Publisher]
[35]. A.K. Agarwal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Progress in Energy and Combustion Science, 2007, 33, 233-271. [Crossref], [Google Scholar], [Publisher]
[36]. P. Schinas, G. Karavalakis, C. Davaris, G. Anastopoulos, D. Karonis, F. Zannikos, S. Stournas, E. Lois, Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece, Biomass and Bioenergy, 2009, 33, 44-49. [Crossref], [Google Scholar], [Publisher]
[37]. S. Jain, M. Sharma, Prospects of biodiesel from Jatropha in India: A review, Renewable and Sustainable Energy Reviews, 2010, 14, 763-771. [Crossref], [Google Scholar], [Publisher]
[38]. S.L. Douvartzides, N.D. Charisiou, K.N. Papageridis, M.A. Goula, Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines, Energies, 2019, 12, 809. [Crossref], [Google Scholar], [Publisher]
[39]. S. Almasi, B. Ghobadian, G. Najafi, M.D. Soufi, A novel approach for bio-lubricant production from rapeseed oil-based biodiesel using ultrasound irradiation: multi-objective optimization, Sustainable Energy Technologies and Assessments, 2021, 43, 100960. [Crossref], [Google Scholar], [Publisher]
[40]. K. Adithyan, S. Edla, A.D. Thampi, S.A. Kumar, B. Sasidharan, M.M. Arif, S. Rani, Experimental investigation on the effects of clove oil as an anti-oxidant additive on the lubricant properties of transesterified rice bran oil, Materials Today: Proceedings, 2023, 72, 2892-2896. [Crossref], [Google Scholar], [Publisher]
[41]. P. Negi, Y. Singh, K. Tiwari, A review on the production and characterization methods of bio-based lubricants, Materials Today: Proceedings, 2021, 46, 10503-10506. [Crossref], [Google Scholar], [Publisher]
[42]. M. Hernández-Cruz, R. Meza-Gordillo, B. Torrestiana-Sánchez, A. Rosales-Quintero, L. Ventura-Canseco, J. Castañón-Gonzáles, Chicken fat and biodiesel viscosity modification with additives for the formulation of biolubricants, Fuel, 2017, 198, 42-48. [Crossref], [Google Scholar], [Publisher]
[43]. B. Angulo, J.M. Fraile, L. Gil, C.I. Herrerías, Bio-lubricants production from fish oil residue by transesterification with trimethylolpropane, Journal of Cleaner Production, 2018, 202, 81-87. [Crossref], [Google Scholar], [Publisher]
[44]. C.P. do Valle, J.S. Rodrigues, L.M.U.D. Fechine, A.P. Cunha, J.Q. Malveira, F.M.T. Luna, N.M.P.S. Ricardo, Chemical modification of Tilapia oil for biolubricant applications, Journal of Cleaner Production, 2018, 191, 158-166. [Crossref], [Google Scholar], [Publisher]
[45]. S. Hamdan, W. Chong, J.H. Ng, M. Ghazali, R. Wood, Influence of fatty acid methyl ester composition on tribological properties of vegetable oils and duck fat derived biodiesel, Tribology International, 2017, 113, 76-82. [Crossref], [Google Scholar], [Publisher]
[46]. U. Bello, C.M. Agu, D.A. Ajiya, A.A. Mahmoud, L. Udopia, N.M. Lawal, A.A. Abubakar, M. Muhammad, Biodiesel, In a quest for sustainable renewable energy: A review on its potentials and production strategies, Journal of Chemical Reviews, 2022, 4, 272-287. [Crossref], [Google Scholar], [Publisher]
[47]. A. Arumugam, V. Ponnusami, Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview, Renewable Energy, 2019, 131, 459-471. [Crossref], [Google Scholar], [Publisher]
[48]. U. Bello, C.M. Agu, D.A. Ajiya, A.A. Mahmoud, L. Udopia, N.M. Lawal, A.A. Abdullahi, M. Muhammad, renewable energy: A review on its potentials and production strategies, Journal of Chemical Reviews, 2022, 4, 272-287. [Crossref], [Google Scholar], [Publisher]
[49]. S. Dawood, A.K. Koyande, M. Ahmad, M. Mubashir, S. Asif, J.J. Klemeš, A. Bokhari, S. Saqib, M. Lee, M.A. Qyyum, Synthesis of biodiesel from non-edible (Brachychiton populneus) oil in the presence of nickel oxide nanocatalyst: Parametric and optimisation studies, Chemosphere, 2021, 278, 130469. [Crossref], [Google Scholar], [Publisher]
[50]. M.K. Yesilyurt, C. Cesur, Biodiesel synthesis from Styrax officinalis L. seed oil as a novel and potential non-edible feedstock: A parametric optimization study through the Taguchi technique, Fuel, 2020, 265, 117025. [Crossref], [Google Scholar], [Publisher]
[51]. M. Halada Nandakrishnan, N. Dhanavel, M. CB, R. PG, M. VH, N. Reddy, Spent silkworm pupae as a renewable and sustainable source for biodiesel, Biofuels, Bioproducts and Biorefining, 2023, 17, 167-177. [Crossref], [Google Scholar], [Publisher]
[52]. N. Santhosh, A. Afzal, Ü. Ağbulut, A.A. Alahmadi, A.C. Gowda, M. Alwetaishi, S. Shaik, A.T. Hoang, Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization, Energy, 2023, 270, 126826. [Crossref], [Google Scholar], [Publisher]
[53]. K. Mohan, P. Sathishkumar, D.K. Rajan, J. Rajarajeswaran, A.R. Ganesan, Black soldier fly (Hermetia illucens) larvae as potential feedstock for the biodiesel production: Recent advances and challenges, Science of The Total Environment, 2023, 859, 160235. [Crossref], [Google Scholar], [Publisher]
[54]. I.Y. Dharmegowda, L.M. Muniyappa, A.B. Suresh, M.P.G. Chandrashekarappa, N. Pradeep, Optimization for waste coconut and fish oil derived biodiesel with MgO nanoparticle blend: Grey relational analysis, grey wolf optimization, driving training based optimization and election based optimization algorithm, Fuel, 2023, 338, 127249. [Crossref], [Google Scholar], [Publisher]
[55]. L. Yi-Chia, M. Sekar, A. Chinnathambi, O. Nasif, B. Gavurová, G. Jhanani, K. Brindhadevi, N.T.L. Chi, Role of chicken fat waste and hydrogen energy ratio as the potential alternate fuel with nano-additives: Insights into resources and atmospheric remediation process, Environmental Research, 2023, 216, 114742. [Crossref], [Google Scholar], [Publisher]
[56]. A.C. Kumoro, M.T.M. Saeed, Ultrasound-assisted transesterification of tropical goat fat–Palm oil blend for biodiesel synthesis, Energy Conversion and Management: X, 2022, 14, 100213. [Crossref], [Google Scholar], [Publisher]
[57]. D.J. Lee, M. Kim, S. Jung, Y.K. Park, Y. Jang, Y.F. Tsang, H. Kim, K.H. Park, E.E. Kwon, Direct conversion of yellow mealworm larvae into biodiesel via a non-catalytic transesterification platform, Chemical Engineering Journal, 2022, 427, 131782. [Crossref], [Google Scholar], [Publisher]
[58]. E. Canh Pham, T.V.T. Le, K.C.T. Le, D. Van Nguyen, Optimization of microwave-assisted biodiesel production from waste catfish using response surface methodology, Available at SSRN 3978735. [Crossref], [Google Scholar], [Publisher]
[59]. A.H. Mahmoud, M.Y. Hussein, H.M. Ibrahim, M.H. Hanafy, S.M. Salah, G.M. El-Bassiony, E.A. Abdelfattah, Mixed microalgae-food waste cake for feeding of Hermetia illucens larvae in characterizing the produced biodiesel, Biomass and Bioenergy, 2022, 165, 106586. [Crossref], [Google Scholar], [Publisher]
[60]. N. Hasan, M.V. Ratnam, Biodiesel production from waste animal fat by transesterification using H2SO4 and KOH catalysts: A study of physiochemical properties, International Journal of Chemical Engineering, 2022, 2022. [Crossref], [Google Scholar], [Publisher]
[61]. M. Gad, A.I. EL-Seesy, H.M.A. Hashish, Z. He, W. Alshaer, Combustion and emissions aspects of a diesel engine working with sheep fat oil biodiesel-diesel blends, Case Studies in Thermal Engineering, 2021, 26, 101162. [Crossref], [Google Scholar], [Publisher]
[62]. a) R. Kumarasubramanian, P. Karthikeyan, S. Yuvaraja, G.S. Prasath, V. Praveenkumar, Performance and emission characteristics of nano emulsion biodiesel by using pork fat oil, Materials Today: Proceedings, 2021, 44, 3707-3711. [Crossref], [Google Scholar], [Publisher] b) S. Ismail, Botanical insecticides and mineral oils synergize toxicity of imidacloprid against Bemisia tabaci (Hemiptera: Aleyrodidae), Progress in Chemical and Biochemical Research, 2021, 4, 295-304. [Crossref], [Google Scholar], [Publisher]
[63]. V. Telgane, S. Godiganur, H. Srikanth, S. Patil, Performance and emission characteristics of a CI engine fueled with milk scum biodiesel, Materials Today: Proceedings, 2021, 45, 284-289. [Crossref], [Google Scholar], [Publisher]
[64]. S. Erdoğan, M.K. Balki, S. Aydın, C. Sayın, Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator, Energy, 2020, 207, 118300. [Crossref], [Google Scholar], [Publisher]
[65]. C. He, Y. Mei, Y. Zhang, L. Liu, P. Li, Z. Zhang, Y. Jing, G. Li, Y. Jiao, Enhanced biodiesel production from diseased swine fat by ultrasound-assisted two-step catalyzed process, Bioresource Technology, 2020, 304, 123017. [Crossref], [Google Scholar], [Publisher]
[66]. A.P.S. Dias, M. Ramos, M. Catarino, M.F.C. Pereira, Biodiesel by co-processing animal fat/vegetable oil mixtures over basic heterogeneous Ca catalyst, Cleaner Engineering and Technology, 2020, 1, 100012. [Crossref], [Google Scholar], [Publisher]
[67]. B. Wang, S. Yan, W. Gao, X. Kang, B. Yu, P. Liu, L. Guo, B. Cui, A. Abd El-Aty, Antibacterial activity, optical, and functional properties of corn starch-based films impregnated with bamboo leaf volatile oil, Food Chemistry, 2021, 357, 129743. [Crossref], [Google Scholar], [Publisher]
[68]. M. Hasan, R. Rusman, I. Khaldun, L. Ardana, M. Mudatsir, H. Fansuri, Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties, International Journal of Biological Macromolecules, 2020, 163, 766-775. [Crossref], [Google Scholar], [Publisher]
[69]. C. Hood, S.M. Ghazani, A.G. Marangoni, E. Pensini, Flexible polymeric biomaterials from epoxidized soybean oil, epoxidized oleic acid, and citric acid as both a hardener and acid catalyst, Journal of Applied Polymer Science, 2022, 139, e53011. [Crossref], [Google Scholar], [Publisher]
[70]. a) J. Yang, Y.C. Ching, S. Julai J, C.H. Chuah, D.H. Nguyen, P.C. Lin, Comparative study on the properties of starch-based bioplastics incorporated with palm oil and epoxidized palm oil, Polymers and Polymer Composites, 2022, 30, 09673911221087595. [Crossref], [Google Scholar], [Publisher] b) Z. Abbasi, M. Ahmadi, Process optimization photo-esterification of free fatty acids in waste cooking oils under UV irradiation via the RSM method, Chemical Methodologies, 2023, 7, 799-824. [Crossref], [Publisher]
[71]. R.M.O. Syafiq, S.M. Sapuan, M.Y.M. Zuhri, S.H. Othman, R.A. Ilyas, Effect of plasticizers on the properties of sugar palm nanocellulose/cinnamon essential oil reinforced starch bionanocomposite films, Nanotechnology Reviews, 2022, 11, 423-437. [Crossref], [Google Scholar], [Publisher]
[72]. D.S.d. Costa, K.P. Takeuchi, R.M.d. Silva, J.G.d. Oliveira Filho, M.R.V. Bertolo, C.M. Belisário, M.B. Egea, G.R. Plácido, Cassava-starch-based films incorporated with buriti (Mauritia flexuosa L.) oil: a new active and bioactive material for food packaging applications, Polysaccharides, 2022, 3, 121-135. [Crossref], [Google Scholar], [Publisher]
[73]. O. Chauhan, C. Nanjappa, N. Ashok, N. Ravi, N. Roopa, P. Raju, Shellac and Aloe vera gel based surface coating for shelf life extension of tomatoes, Journal of Food Science and Technology, 2015, 52, 1200-1205. [Crossref], [Google Scholar], [Publisher]
[74]. K. Chitravathi, O. Chauhan, P. Raju, Postharvest shelf-life extension of green chillies (Capsicum annuum L.) using shellac-based edible surface coatings, Postharvest Biology and Technology, 2014, 92, 146-148. [Crossref], [Google Scholar], [Publisher]
[75]. T.G. Gutowski, The carbon and energy intensity of manufacturing, 40th Seminar of CIRP, Keynote Address, Liverpool University, Liverpool, UK, 2007. [Google Scholar], [Publisher]
[76]. E. Brinksmeier, D. Meyer, A. Huesmann-Cordes, C. Herrmann, Metalworking fluids—Mechanisms and performance, CIRP Annals, 2015, 64, 605-628. [Crossref], [Google Scholar], [Publisher]
[77]. S. Anton, S. Andreas, B. Friedrich, Heat dissipation in turning operations by means of internal cooling, Procedia Engineering, 2015, 100, 1116-1123. [Crossref], [Google Scholar], [Publisher]
[78]. M. Mahadi, I. Choudhury, M. Azuddin, Y. Nukman, Use of boric acid powder aided vegetable oil lubricant in turning AISI 431 steel, Procedia Engineering, 2017, 184, 128-136. [Crossref], [Google Scholar], [Publisher]
[79]. B.U. Anyanwu, D. Fadare, O.S. Issac Fayomi, P.O. Aiyedun, Exploring the potential of animal fats and vegetable oils as potential metal cutting fluids., International Journal of Mechanical and Production Engineering Research and Development, 2020, 10, 1139–1146. [Google Scholar], [Publisher]
[80]. V.L. Mucci, M.E.V. Hormaiztegui, M.I. Aranguren, Plant oil-based waterborne polyurethanes: A brief review, Journal of Renewable Materials, 2020, 8, 579–601. [Crossref], [Google Scholar], [Publisher]
[81]. I. Singh, S.K. Samal, S. Mohanty, S.K. Nayak, Recent advancement in plant oil derived polyol‐based polyurethane foam for future perspective: A review, European Journal of Lipid Science and Technology, 2020, 122, 1900225. [Crossref], [Google Scholar], [Publisher]
[82]. a) A.R. Unnithan, P.T. Pichiah, G. Gnanasekaran, K. Seenivasan, N.A. Barakat, Y.S. Cha, C.H. Jung, A. Shanmugam, H.Y. Kim, Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 454-460. [Crossref], [Google Scholar], [Publisher] b) H. Jabbari, N. Noroozi Pesyan, Production of biodiesel from jatropha curcas oil using solid heterogeneous acid catalyst, Asian Journal of Green Chemistry, 2017, 1, 16-23. [Crossref], [Google Scholar], [Publisher]
[83]. J.H. Kim, A.R. Unnithan, H.J. Kim, A.P. Tiwari, C.H. Park, C.S. Kim, Electrospun badger (Meles meles) oil/Ag nanoparticle based anti-bacterial mats for biomedical applications, Journal of Industrial and Engineering Chemistry, 2015, 30, 254-260. [Crossref], [Google Scholar], [Publisher]
[84]. T. Amna, M.S. Hassan, J. Yang, M.S. Khil, K.D. Song, J. D. Oh, I. Hwang, Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications, International Journal of Nanomedicine, 2014, 891-898. [Crossref], [Google Scholar], [Publisher]
[85]. a) A. Rezaei, H. Ehtesabi, S. Ebrahimi, Incorporation of Saqez essential oil into polyvinyl alcohol/chitosan bilayer hydrogel as a potent wound dressing material, International Journal of Biological Macromolecules, 2023, 226, 383-396. [Crossref], [Google Scholar], [Publisher] b) J. Mejri, A. Aydi, M. Abderrabba, M. Mejri, Emerging extraction processes of essential oils: A review, Asian Journal of Green Chemistry, 2018, 2, 246-267. [Crossref], [Google Scholar], [Publisher]
[86]. H. Mahmood, M. Asif, S.H. Khalid, I.U. Khan, Z. Chauhdary, F.A. Razzaq, S. Asghar, Design of a multifunctional carrageenan-tannic acid wound dressing co-loaded with simvastatin and geranium oil, Journal of Drug Delivery Science and Technology, 2023, 79, 104080. [Crossref], [Google Scholar], [Publisher]
[87]. R. Stacey, J. Taylor, Writing that cannot be erased: investigations of a box of pigmented inlays from the tomb chapel of an Old Kingdom noble, British Museum technical research bulletin, 2007, 1, 49–51. [Google Scholar]
[88]. D.G. Jarvis, T.M. Barrett, The Historical Use of Ochre Pigments in Newfoundland and Labrador, Heritage NL Fieldnote Series, 2019, 3, 18. [Google Scholar], [Publisher]
[89]. K.J. Van den Berg, I. Bonaduce, A. Burnstock, B. Ormsby, M. Scharff, L. Carlyle, G. Heydenreich, K. Keune, Conservation of modern oil paintings, Springer, 2019. [Crossref], [Google Scholar], [Publisher]
[90]. I. W. Lane and H. H. Kriegel, The story of menhaden fish oil. The leading marine oil produced in the United States, Journal of the American Oil Chemists’ Society, 2018, 40, a4–a7. [Crossref], [Google Scholar], [Publisher]
[91]. H. Fineberg, A.G. Johanson, Industrial use of fish oils, US Bureau of Commercial Fisheries, 1967. [Google Scholar], [Publisher]
[92]. R. Ackman, Fish oils, Bailey's Industrial Oil and Fat Products, 2005. [Crossref], [Google Scholar], [Publisher]
[93]. F.R. CK, T. Farooq, K. Sharun, S. Talukder, R.R. Kumar, Rendered animal fat: A boon to the cosmetic industry, Indian Vet. J, 2022, 99, 20-26. [Crossref], [Google Scholar]
[94]. B. Mishra, M. Akhila, A. Thomas, B. Benny, H. Assainar, Formulated therapeutic products of animal fats and oils: Future prospects of zootherapy, International Journal of Pharmaceutical Investigation, 2020, 10. [Crossref], [Google Scholar], [Publisher]
[95]. S.M. Alshahrani, Preparation, characterization and in vivo anti-inflammatory studies of ostrich oil based nanoemulsion, Journal of Oleo Science, 2019, 68, 203-208. [Crossref], [Google Scholar], [Publisher]
[96]. C. Lee, Y.A. Eom, H. Yang, M. Jang, S.U. Jung, Y.O. Park, S.E. Lee, H. Jung, Skin barrier restoration and moisturization using horse oil-loaded dissolving microneedle patches, Skin Pharmacology and Physiology, 2018, 31, 163-171. [Crossref], [Google Scholar], [Publisher]
[97]. I.A. Abdalsamed, I.A. Amar, F.A. Altohami, F.A. Salih, M.S. Mazek, M.A. Ali, A.A. Sharif, Corrosion strategy in oil field system, Journal of Chemical Reviews, 2020, 2, 28-39. [Crossref], [Google Scholar], [Publisher]