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A B S T R A C T 

Magnetic nanoparticles (MNPs) have emerged on the central stage in material 
sciences with diverse applications especially in biomedical and environmental 
fields. This review focuses on the recent development of nickel and cobalt 
magnetic nanoparticles. Various methods of synthesis, composition, 
characterization, and applications have been discussed in this article. The main 
aim of the review is to highlight that not only iron nanoparticles show magnetic 
properties and applications, but also nickel and cobalt nanoparticles exhibit 
such behaviour in different types of smart materials. The findings of this study 
are that similar methods of synthesis and characterization can be equally 
applied to Ni and Co MNPs just like Iron MNPs.  
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1. Introduction 

agnetic nanoparticles (MNPs) have 
emerged as highly versatile 
materials with a remarkable array 
of applications attracting 
widespread attention and research 

efforts within the scientific community over the 
past two decades [1,2]. These nanoparticles 
exhibit a unique set of properties, including 
precise size control, well-defined crystalline 
structures, and exceptional stability in various 
solvents making them indispensable in an ever-
expanding range of scientific and industrial 
domains [3,4]. This comprehensive review 
endeavors to provide an in-depth exploration of 
the synthesis, characterization, and diverse 
applications of nickel and cobalt-based MNPs 
shedding light on the significant strides made in 
recent years towards harnessing the immense 
potential of these nanoparticles. MNPs play a 
pivotal role in a multitude of applications 
spanning fields such as biomedicine, 
environmental remediation, energy storage, 
data storage, catalysis, and magnetic resonance 
imaging (MRI). Their unique combination of 
magnetic properties coupled with their tunable 
sizes and shapes has rendered them 
indispensable in addressing contemporary 

scientific and technological challenges. By 
meticulously examining the synthesis 
methodologies and recent advances, this review 
aims to offer valuable insights into the 
utilization of MNPs as a central building block 
for an array of innovative applications [5-8]. 

A central theme in this review revolves around 
the various methods employed for the MNPs 
synthesis. One widely adopted approach is 
thermal decomposition. This technique involves 
the controlled decomposition of precursor in 
the presence of organic surfactants at elevated 
temperatures. The resultant MNPs are 
characterized by precise size control, uniform 
shapes (often spherical) and remarkable 
resistance to oxidation. The magnetic 
characteristics of these MNPs are intricately 
linked to their individual sizes allowing for fine-
tuning of their properties through manipulation 
of synthesis parameters [9-12]. Another 
prominent method is chemical reduction 
known for its simplicity, environmental 
friendliness, and scalability. Chemical reduction 
involves the reduction of metallic salts using 
suitable reducing agents while stabilizing ionic 
complexes through capping agents. This 
method has been pivotal in producing fine 
particles of ferromagnetic transition metals 

M 
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such as nickel and cobalt in powdered form 
which display excellent dispersion and stability 
catering to a wide spectrum of applications [13-
17]. The wet chemical method, on the other 
hand, leverages chemical reactions in liquid 
solutions for nanoparticle synthesis. This 
versatile method enables the use of various 
precursors and allows the production of 
different shapes and morphologies of MNPs, 
expanding their applicability. Recent 
advancements in this technique have further 
extended its potential for tailoring MNPs to 
meet specific requirements [18-21]. In contrast, 
the sol-gel method offers an environmentally 
conscious approach using readily available 
starting materials. It ensures even blending 
well-defined crystalline properties and precise 
size distribution of the nanoparticles. This 
approach exemplifies an economical route for 
the synthesis of substantial quantities of MNPs 
while maintaining precise size control. The 
solution-phase method provides a 
straightforward means of achieving uniformly 
distributed small-sized MNPs. This method 
relies on surfactants to prevent nanoparticle 
aggregation, ensuring uniform dispersion. It has 
been successfully employed in the synthesis of 
nickel nanoparticles, with prominent 
applications [22-24]. 

The MNPs potential transcends their synthesis 
methodologies, extending to a multitude of 
applications. In biomedicine, MNPs are utilized 
for targeted drug delivery, hyperthermia 
therapy and as contrast agents in MRI. They 
have also made significant contributions to 

environmental remediation where they are 
employed in wastewater treatment and 
pollutant removal [25]. 

In the realm of energy storage, MNPs play a 
crucial role in the development of advanced 
batteries and supercapacitors enhancing energy 
density and charge-discharge efficiency. Data 
storage benefits from MNPs in the form of high-
density magnetic storage media while catalysis 
exploits their surface properties for enhanced 
catalytic performance [26]. As we delve into the 
multifaceted applications of nickel and cobalt-
based MNPs, it becomes apparent that these 
nanoparticles are pivotal in addressing some of 
the most pressing challenges in science and 
technology today. Their unique magnetic 
properties coupled with the ability to tailor 
their size and shape make them indispensable 
building blocks for innovation across a 
spectrum of fields [27]. 

2. Main Synthesis Methods for Nickel and 
Cobalt Magnetic Nanoparticles (MNPs) 

Main synthesis of nickel and cobalt MNPs is 
shown in Figure 1. 

2.1. Thermal decomposition 

The approach used in creating these MNPs 
results in excellent crystalline properties, 
precise size control, clearly defined shapes such 
as spherical, monodisperse, and uniformed with 
ability of self-assembly. The MNPs produced 
exhibit stability in hydrocarbon solvents,

 
Figure 1. Main synthesis of nickel and cobalt MNPs 
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displaying resistance to oxidation from air 
exposure. The magnetic characteristics of the 
nanoparticles rely on their individual sizes [28-
30]. The decomposition of precursors occurs in 
the presence of organic surfactants mainly 
oleylamine, trioctylphosphine, and 
triphenylphosphine. In this method, different 
precursors are used to produce monodisperse 
MNPs under extreme temperature (240-245 oC) 
such as Nickel(II) acetylacetonate; Ni (acac)2 
[31], Nickel (aceto)2-oleylamine [32], Cobalt 
octacarbonyl; Co2(CO)8 [30], Cobalt nitrate 
hexahydrate, Co(NO3)2·6H2O [33], and  Cobalt 
bis(salicylidene) [29]. Control of the crystalline 
phase is influenced significantly by factors such 
as reaction temperature, duration, heating rate, 
and the type of solvent used. Varying these 
reaction parameters can lead to the formation 
of either face-centered cubic (FCC) or 
hexagonal close-packed (HCP) magnetic 
nanoparticles [34]. In comparison to co-
precipitation, the thermal decomposition 
technique proves to be more advantageous in 
the production of smaller-sized magnetic 
nanoparticles [35]. The magnetic 
characteristics of organized arrays of cobalt 
nanoparticles exhibit enhancements when 
contrasted with cobalt nanoparticle powder 
compressed within an enclosure or mixed with 
wax) [30]. Both experimental and theoretical 
analyses are conducted to explore the magnetic 
characteristics of the MNPs across varying 
particle sizes [35]. The as prepared MNPs size 
ranges from 2-114 nm in diameter (Table 1) 
[29,36]. 

2.2. Chemical reduction 

The chemical reduction process comprises 
three fundamental phases: the reduction of 
metallic salts using reducing agents, ionic 
complexes stabilization, and size regulation 
facilitated by the capping agent. This approach 
is straightforward, environmentally friendly, 
and yields remarkable product quantities 
without the need for separation methods like 
column chromatography. Chemical processes 
possess a notable benefit in generating 
materials in powder format. Consequently, 
chemical reduction has evolved into an 
essential method for manufacturing fine 

particles of ferromagnetic transition metals 
(such as nickel and cobalt) and their alloys in 
powdered state [37]. Chemical reduction can be 
employed to create fine nickel particles by 
utilizing nickel salt like nickel chloride 
hexahydrate in combination with a reducing 
agent such as sodium borohydride. Ni 
nanoparticles at the nanoscale achieved 
through the reduction process using 
borohydride [38]. Nanocrystalline nickel (Ni) 
nanoparticles with a face-centered cubic 
structure are synthesized at a temperature of 
60 °C. This process involves the utilization of 
NiCl2 as a precursor, hydrazine hydrate as the 
reducing agent, and ethylene glycol as the 
capping agent [38-42]. This technique leads to 
the synthesis of nickel nanoparticles, initiated 
by dissolving nickel chloride hexahydrate in 
water. Subsequently, hydrazine hydrate is 
introduced and the process is supplemented 
with the addition of NaOH to uphold alkaline 
conditions [42]. The production of cobalt 
magnetic nanoparticles can be achieved 
through a chemical reduction approach 
involving salts within alkali solutions. The 
synthesis of Co nanoparticles is initiated by the 
reduction of Co(NO3)2, followed by a 
subsequent high-temperature hydrogen 
reduction lasting 30 to 150 minutes. The 
resulting samples are subject to analysis 
through TGA and XRD techniques (Table 1) 
[43]. 

2.3. Wet chemical method 

The approach involving wet chemical method is 
another commonly used technique for 
synthesizing magnetic nanoparticles. It involves 
the use of chemical reactions in a liquid solution 
to produce the nanoparticles. Various 
precursors can be used depending on the 
desired properties of the nanoparticles. Some 
common precursors include metal salts, metal 
oxides, and organic compounds. These 
precursors are typically dissolved in a solvent 
such as water or an organic solvent and then 
subjected to various chemical reactions, such as 
precipitation, hydrolysis, or reduction to form 
the magnetic nanoparticles [44]. The selection 
of precursor materials and manipulation of 
reaction parameters significantly impact the 
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dimensions, configurations, and magnetic 
attributes of the nanoparticles [45]. Under 
alkaline conditions, nickel nanoparticles are 
produced through the reduction of a nickel-
complex that arises from a mixture of nickel 
acetate and hydrazine solution. In recent years, 
various shapes and morphologies of nickel and 
cobalt magnetic nanoparticles have been 
successfully synthesized using this technique. 
Examples include nanotubes, nanorods, hollow 
spheres, nanobelts, nanoprisms, and hexagonal 
flakes (Table 1) [44,46]. 

2.4. Sol-gel method  

This technique is environmentally conscious 
utilizing cost-effective chemicals and saving 
time thus presenting a straightforward and 
economical pathway due to the employment of 
readily available and limited starting materials.  
The sol-gel method offers various advantages 
including even blending, well-defined 
crystalline properties, and a consistent precise 
size distribution of the resultant nanoparticles. 
The sol-gel technique enables the production of 
significant quantities of MNPs while 
maintaining size control and precise shaping 
[47]. NiO nanoparticles are synthesized via a 
sol-gel method, where nickel chloride 
hexahydrate is employed as the precursor and 
polyvinylpyrolidone serves as the capping 
agent. The sol-gel method was employed to 
successfully synthesize NiO magnetic 
nanoparticles with nickel nitrate hexahydrate 
and sodium hydroxide as the key constituents. 
The findings revealed the generation of pure 
NiO nanoparticles without any trace of 
impurities (Table 1) [47]. 

2.5. Solution phase approach 

The synthesis of magnetic nanoparticles using a 
solution-phase method is a straightforward 
means to achieve the production of uniformly 
distributed, small-sized MNPs. This method 
involves using surfactants to prevent the 
nanoparticles from aggregating. One specific 
example is the synthesis of nickel nanoparticles 
using dimethylformamide both as the  
reductant and solvent [48]. This study 
represents the primary instance of employing 
DMF for the fabrication of nickel nanoparticles. 

Furthermore, this technique can be further 
applied to generate cobalt magnetic 
nanoparticles. In this case, cobalt acetate tetra 
hydrate serves as the precursor, while sodium 
borohydride acts as the reducing agent. 
Employing various surfactants can influence the 
magnetic characteristics of cobalt MNPs. 
Utilizing oleic acid as a surfactant yields 
ferromagnetic cobalt nanoparticles exhibiting a 
room temperature coercivity of 583. 
Interestingly, the incorporation of both oleic 
acid and trioctylphosphine surfactants in the 
process results in a noteworthy decrease in 
coercivity to 360.6 Oe [49]. Moreover, his 
solution-based approach can be employed to 
craft various nanoscale metals and intricate 
structures (Table 1) [48,50]. 

2.6. Arc discharged method 

A controlled synthetic approach was 
formulated to produce nickel nanoparticles 
through the utilization of an arc discharge 
technique coupled with an ultrasonic nebulizer. 
This method, characterized by its cost-
effectiveness and environmental friendliness, 
offers an efficient means of generating magnetic 
nanoparticles of nickel and cobalt. These 
nanoparticles exhibit a narrow size 
distribution, high purity, and spherical shape. 
Spherical fine Nickel magnetic nanoparticles 
are prepared through this method. The 
magnetic characteristics of the produced nickel 
magnetic nanoparticles are significantly 
influenced by their size. As the particle size 
decreases below a critical threshold, a 
distinctive superparamagnetic behavior 
becomes evident (Table 1) [51]. This 
fabrication technique is widely employed in the 
creation of magnetic nanoparticles for diverse 
applications, including magnetic data storage, 
biomedical imaging, and catalytic processes. 

2.7. Sonochemical method 

The sonochemical method offers Benefits like 
swift fabrication and homogeneous particle size 
distribution and having the capability of 
controlling the size and shape of the magnetic 
nanoparticles. The sonochemical technique for 
the preparation of nickel and cobalt magnetic 
nanoparticles involves the use of ultrasonic 
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waves to induce cavitation in a liquid medium 
containing metal precursors [52]. Easily 
achievable via a sonochemical synthesis within 
a PVP-assisted reaction setup, nickel 
nanoparticles can be obtained with manageable 
size and structure. These findings provide a 
direct route to modulate the magnetic 
attributes of nickel nanoparticles by regulating 
their self-organization over time (Table 1) [53]. 
This method offers the capability to convert 

cobalt into its zero-valent state using calcium 
instead of hydrogen. A notable benefit of 
employing this method is its capacity to recycle 
oxidized nanoparticles back into cobalt 
nanoparticles, all without necessitating 
chemical solvents or involving complex, multi-
step procedures [26]. In addition, the 
sonochemical method offers a fast and efficient 
way to produce magnetic nanoparticles with 
excellent dispersibility and stability.

Table 1. Methods of synthesis used for synthesis of Ni and Co MNPs 
S.No. Precursor Base Reducing agent Other Ref. 

Thermal Decomposition 
1 Ni(acac)2 Oleylamine               _ Methylene / Hydrogen [54] 
2 Ni(aceto)2]–

oleylamine 
      _ Triphenyl phosphine Ethanol/ hexane / toluene  [32] 

3 Ni(acac)2       _ 
 

Oleic acid / Oleyl 
amine 

Argon / Ethanol / Toluene / 
Hexane 

[55] 

4 Ni(acac)2       _ Oleic acid Ethanol [34] 
5 Ni(acac)2 HAD Trioctyl phosphine Toluene [56] 
6 Ni(acac)2   _ 

 
Oleyl amine Dioctylether / Ethanol / 

Acetone / Hexane / 
Chloroform 

[28] 

7 Ni(acac)2 NaOH Hydrazine Distilled water  [44] 
8 Bis(salicylaldimina

to)cobalt 
- Oleyl amine Argon / Ethanol [29] 

9 Co2(CO)8 - Oleic acid Heptane / Dichlorobenzene [30] 
10 Co(NO3)2 ·6H2O - Trioctyl phosphine 

oxide 
Ethylene glycol / Acetone [33] 

Chemical Reduction 
11 NiCl2 ·6H2O     _ NaBH4          _ [37] 
12 NiCl2 ·6H2O     _ NaBH4 Deionized water / Ethanol [57] 
13 NiCl2 ·6H2O     _ NaBH4 Distilled water / Acetone  [38] 
14 NiCl2 ⋅6H2O NaOH Ni(acac)2 Ethylene glycol / Ethanol [39] 
15 NiCl2 ⋅6H2O NaOH Hydrazine Ethanol  [40] 
16 NiCl2 ⋅6H2O  NaBH4 / Hydrazine Distilled water [41] 
17 NiCl2 ⋅6H2O NaOH Hydrazine Ethanol [42] 
18 NiCl2 ⋅6H2O NaOH Hydrazine            - [58] 
19 NiCl2 ⋅6H2O  NaBH4 Distilled water [38] 
20 NiCl2 NaOH       -          - [59] 
21 CoCl2 .H20     - NaBH4 Ethylene glycol [46] 
22 Co(NO3)2 ·6H2O NaOH        - Distilled water [43] 

Wet Chemical 
23 Ni(CH3COO)2 .2H2O NaOH  Hydrazine hydrate / 

Hydrochloric acid  
[44] 

24 Ni(AMD)2     _           _ Imidazolium [45] 
Sol Gel Method  

25 NiNO3 .6H2O NaOH          _ Deionized water [47] 
26 Co(NO3)2 ·6H2O NH3          _ Ethylene glycol / Glycine 

Urea 
[60] 

27 NiNO3 .6H2O NaOH          _ Deionized water [47] 
Solution Phase Approach 

28 NiCl2 ⋅6H2O       _ DMF Distilled water / Ethanol [48] 
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Table 1. Continued 

29 NiCl2 ⋅6H2O NaOH Hydrazine / 
surfactant 

cetyltrimethyl 
amonium bromide 

(CTAB) 

Acetone [50] 

30 CoCl2 .6H2O NH3 DMF Distilled water / Ethanol [48] 
31 Co(NO3)2 ·6H2O NaOH             - Distilled water / Ethanol [49] 
32 CoCl2 .6H20 - TEA  [36] 

Arc Discharge Method 
33 NiNO3     _ 

 
        _ 

 
Argon / Ultrasonic nebulizer 

/ cold water 
[51] 

34 Ni(OH)2      _         _ Tungsten rod / HCl / HNO3 [61] 
Sonochemical Method 

35 Ni(OCOCH3)2 · 
4H2O 

 Polyvinyl pyrolidone Acetone/ Isopropyl alcohol [53] 

36 Ni(COD)2  Polyvinyl pyrolidone Acetone [52] 
 

3. Composition of Magnetic Nickel and 
Cobalt Nanoparticles  

3.1. Oxides  

Metal oxide magnetic nanoparticles (MNPs) 
have garnered significant interest in recent 
times due to their magnetic properties and 
inherent chemical stability. These attributes 
hold great promise for potential applications in 
the fields of magnetic separation and 
biomedicine. They are synthesized through a 
straightforward procedure primarily relying on 
nickel and cobalt complexes in alkaline 
environments [62]. 

By regulating the solvent and employing 
oleylamine as a surfactant, the intended particle 
size can be achieved. Oleylamine, serving as a 
capping agent, limits particle growth during 
this phase of the procedure. Utilizing 
oleylamine as a surfactant for adjusting the 
energy of the particle surface, diverse 
morphologies of nickel and cobalt oxides can be 
achieved. This approach facilitates directed 
growth, leading to formations such as 
octahedral Ni3O4 nanoparticles and Co3O4 
nanoprisms [63, 64]. 

Particle growth along a specific direction can be 
managed by adjusting the surfactant quantity. 
Furthermore, through thermal annealing, nickel 
oxide can be converted into cobalt oxide. 
Analogous approaches were taken to synthesize 

cobalt oxides. In the presence of PVP, a 
hydrothermal procedure led to the formation of 
nanoscale platelets (NPLs) composed of cobalt 
(II) hydroxide [Co (OH)2] from cobalt nitrate 
[Co (NO3)3]. This process could potentially give 
rise to cobalt oxide MNPs [65]. Examination of 
the magnetic characteristics of the samples 
through the VSM technique reveals that the NiO 
nanoparticles (post-calcination) exhibit 
superparamagnetic properties [66]. 

3.2. Carbides 

In spite of their notable magnetic attributes and 
stability, nickel and cobalt carbides (Ni5C2, 
Ni3C, and Co2C) have received limited attention 
due to the difficulties encountered in their 
synthesis, particularly in achieving precise 
control over size and morphology. Ni5C2 
magnetic nanoparticles were synthesized 
through the decomposition of Ni (CO)5 in the 
presence of octadecylamine [67]. 

Highly crystalline nickel magnetic nanoparticles 
were subjected to carbonization to create 
Ni5C2. In an effort to modulate surface energy, 
bromide was introduced during the carbide 
MNPs synthesis, though the underlying 
mechanism remained ambiguous. The resulting 
Ni5C2 MNPs, with a diameter of 20 nm, 
exhibited an amorphous outer layer. A 
synthetic chemical pathway was devised, 
leading to the formation of Ni carbide MNPs 
with distinct crystalline structures [68]. The 
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Figure 2. Different characterization parameters of Ni/Co MNPs

nickel carbides display subtle ferromagnetic 
attributes, suggesting that diverse synthetic 
pathways for their creation might yield various 
types. This is particularly evident when halide 
ions are introduced, as they may influence the 
absorption of carbon content through selective 
means.     

4. Characterization of Nickel and Cobalt 
Magnetic Nanoparticles 

The nickel and cobalt magnetic nanoparticles 
(MNPs) are examined using various tools and 
methods to ascertain their dimensions, form, 
and structure (Figure 2) [69]. A few of the 
devices employed for their analysis comprise 
atomic force microscopy (AFM), (FT-IR) 
spectroscopy, ultraviolet spectrometry, (TEM) 
transmission electron microscopy, and (MS) 
Mossbauer spectroscopy. The zeta potential is 
employed to assess the stability of the nickel 
and cobalt MNPs [51,70]. 

4.1. Size, shape and morphology 

Utilizing scanning electron microscopy (SEM) 
provides numerous benefits in determining the 
dimensions, form and structure of the 
nanoparticles. The mean size is computed 
based on SEM analysis. XRD is employed for 
attaining a uniform configuration of nickel and 
cobalt magnetic nanoparticles (MNPs) [9,51]. 
Method such as transmission electron 
microscopy (TEM)/high resolution 
TEM(HRTEM) and atomic force microscopy 
(AFM), SEM/filed - emission scanning electron 
microscopy (FESEM) can gauge the surface 
structure of nickel and cobalt MNPs. The image 
obtained through this device furnish insights 
into their form and dimensions, which enables 

the calculation of their diameter [46, 71]. The 
AFM methodology is utilized to gauge step 
height, surface roughness, and particle 
distribution. TEM imparts valuable information 
about composition, structure, and dimensions 
of these MNPs. SEM on the other hand, 
furnishes data about surface features and 
sample composition. Transmission electron 
microscopy proves exceedingly beneficial to 
attain an evaluation of crystallinity, aggregation 
state of MNPs, lattice spacing and electron 
phase displacement. The distinct peaks evident 
in XRD are amenable to size computation for 
MNPs, a process facilitated the Scherer 
equation. Conversely, amorphous MNPs yield 
broader peaks that complicate size 
determination [34,60,70]. The XRD utilization 
serves to elucidate the crystalline nature of 
nickel and cobalt MNPs. Both XRD and TEM can 
determine both the average particle size and its 
distribution. 

4.2. Elemental composition 

Various tools such as (TEM) transmission 
electron microscopy, (XPS) X-ray photoelectron 
microscopy, and (SEM) scanning electron 
microscopy (SEM), have the capability to 
establish the elemental constitution and surface 
structure [25, 72]. Determination of the 
elemental makeup in nickel and cobalt MNPs is 
also facilitated by atomic absorption 
spectrophotometry (AAS). The elemental 
composition of the synthesized materials is 
established through the utilization of energy-
dispersive X-ray spectroscopy (EDX), a micro-
analytical technique often employed in 
conjunction with SEM [73-75]. The magnitude 
of the peak in the EDX spectrum provides 
insights into the elements’ concentration within 
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the sample [47,75]. Similarly, (XRF) X-ray 
fluorescence is employed to ascertain the 
elemental structure of these MNPs. Preparing 
samples for XRF analysis is straightforward, 
quick, and secure, especially when contrasted 
with alternative approaches. It has the ability to 
identify elements quantities in minute as 100 
ppb (parts per billion). Furthermore, X-ray 
diffraction (XRD) can also serve to identify 
oxides or hydroxides. 

4.3. Type of bonding and structure  

The arrangement and connection qualities of 
magnetic nanoparticles are ascertained using 
various methods. The methods employed are 
Fourier transform infrared, X-ray absorption 
spectroscopy), and thermos-gravimetric 
analysis, X-ray photoelectron microscopy and 
Raman spectroscopy. X-ray photoelectron 
microscopy is applicable for the exterior 
arrangement of MNPs, which furnishes details 
on the composition and speciation of 
components [43,76]. Fourier transform infrared 
and x-ray photoelectron microscopy facilitate 
the identification of the interaction between 
organic and inorganic materials, particle 
binding energy and oxidation state. Fourier 
transform infrared spectroscopy additionally 
proves advantageous in understanding the 
functional clusters of organic molecules. The 
Raman Spectroscopic method is performed to 
reveal the compound’s structure and lattice 
arrangement. The Thermo-Gravimetric analysis 
technique is utilized to assess the binding 
effectiveness on the particle surface by 
providing information about coating formation, 
particularly with regards to surfactants and 
polymers. The X-ray absorption spectroscopy 
provides valuable insights into oxidation states 
and fundamental components of electronic 
configuration [64, 77]. 

4.4. Magnetism 

The magnetic properties of nickel and cobalt 
magnetic nanoparticles rely on their 
construction through various synthetic 
pathways. The size of Ni MNPs varies from the 
nano- to micro-scales, exhibiting 
superparamagnetic properties. When expose to 
an external magnetic field, these MNPs display 

magnetic responsiveness and have the 
capability to interact with the ambient magnetic 
fields [45,78]. Nonetheless, when an external 
magnetic field is absent, they do not exhibit any 
magnetism. The magnetic properties of nickel 
and cobalt MNPs are evaluated using various 
methodologies, including VSM and SQUID 
[51,79]. For the overall measurement of 
magnetization magnetometry are employed. 
The Superconducting quantum interference 
device proves especially useful in analyzing 
samples in diverse states, encompassing thin 
films, powders, crystals, liquids, and gases [80]. 
Both Superconducting quantum interference 
device and Vibrating sample magnetometry 
techniques can ascertain magnetic saturation 
and residual magnetization while maintaining a 
constant external magnetic field [55,81]. 
Another reliable technique for assessing the 
magnetic characteristics of nickel and cobalt 
MNPs is physical property measurement 
system (PPMS) [39]. The Vibrating sample 
magnetometer can assess magnetization of 
Magnetic nanoparticles typically when exposed 
to an external magnetic field ranging from -3 to 
3T. It is also useful for evaluating the shells 
impact on magnetization saturation. The 
physical property measurement system is 
dependable approach for determining the 
magnetic characteristics and the MNPs 
behaviour. This setup is devised for the 
measurement of the relationship between 
magnetization, magnetic field, and temperature 
in samples of MNPs [82-84].  

5. Applications of Nickel and Cobalt 
Magnetic Nanoparticles 

The MNPs in the previous ten years have 
garnered significant interest due to their 
encouraging outcomes across diverse domains. 
MNPs possessing superparamagnetic 
characteristics, distinct dimensions, 
configuration, elevated surface area and volume 
proportion, and biocompatibility enhance 
potential of their utilization. As a result of these 
attributes, it has drawn the attention of 
numerous researchers from various disciplines. 
Within this overview, we have condensed the 
implementations of MNPs in established 
domains like catalysis, medical science, and 
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magnetic traits, as well as the deterioration of 
dyes. A summarized outline of MNPs potential 
uses within these areas is given in Figure 3 
while concise delineation is furnished below. 

5.1. Catalysis 

So far, numerous catalytic process and 
configurations have been developed  
for converting starting materials into final 
products. One drawback of homogeneous 
catalysts is the challenge of isolating them from 
the chemical processes. In recent times, the 
limitations of heterogeneous catalysis have 
been alleviated and reduced through the 
utilization of catalysts supported by magnetic 
nanoparticles. The Magnetic NPs possess the 
capability to offer an extensive exterior area to 
uphold effective sites for effortless conversion 
of starting material into products, 
simultaneously merging the benefits of high 
dispersion and reactivity in the separation of 
these catalysts [74]. Nickel and cobalt MNPs can 
be commonly employed as a catalyst such as 
oxidation under aerobic conditions of alcohols, 
reductive hydrogenation and Suzuki coupling 
reactions. Catalytic hydrogenation of alkene 
with Ni Magnetic nanoparticle changing a 
double bond from C=C to a single bond C-C 
[5,85-86]. Due to their magnetic and catalytic 
attributes, these nanoparticles find extensive 
utility across diverse domains. Large-sized 
monodisperse nickel nanoparticles were 
effectively employed for the purification of 
proteins carrying histidine tags (Table 2) [28]. 
Nickel and cobalt magnetic nanoparticles can 
serve as a promising adsorbent in industrial 
wastewater treatment, particularly for effluents 
containing CR. The experimental findings 
indicate that the Ni nanoparticles produced in 
this manner could serve as a viable adsorbent 
in sewage treatment applications [22, 57]. 
Magnetic nanoparticles of nickel and cobalt 
have been engineered to create magnetic 
biocatalysts, enhancing recovery rates, 
reusability, and catalytic efficacy in the lipase-
Ni system for both hydrolytic and synthetic 
reactions. This approach offers a 
straightforward and cost-effective method to 
generate effective and reusable magnetic 
biocatalysts, showcasing potential applicability 
on an industrial scale [87-88]. In recent times, 

the photochemical catalytic system has 
emerged as an effective and dependable 
technique for the degradation of pollutants 
using natural light. Within this framework, 
sunlight acts as an external stimulus to activate 
the system, generating free radicals that 
interact with pollutants and initiate 
degradation processes (Table 2) [79,89]. 

5.2. Biomedical  

In recent times, magnetic nanoparticles (MNPs) 
have gained significant prominence in various 
biological applications due to their diverse 
physicochemical properties, convenient 
synthesis, stability, and biocompatibility. MNPs 
can effectively interact with external magnetic 
fields and influence the surrounding magnetic 
environment, thus enhancing magnetic 
resonance imaging (MRI). The application of an 
external magnetic field induces different forces 
and torques on dipoles, leading to translation, 
rotation, and energy dissipation. These 
phenomena find extensive utility in numerous 
fields such as cell separation and biomarker 
detection, targeted drug delivery through 
magnetic means, manipulation of cell surface 
receptors via magneto-mechanical interactions, 
biomedical imaging, bacterial theranostics, 
controlled drug release activation, and 
hyperthermia treatment. The MNPs 
composition can vary, resulting in distinct 
physical and magnetic properties tailored to 
specific applications. However, in the realm of 
biomedical research, a crucial consideration is 
their potential biocompatibility and toxicity 
[74]. Cobalt and cobalt oxide magnetic 
nanoparticles (MNPs) have found various 
biomedical applications, including acting as 
enhancers for magnetic resonance imaging 
(MRI), demonstrating anti-proliferative effects 
on cancer cells, and enabling hyperthermia 
treatment. These MNPs have proven valuable in 
biomedical sensing, contrast-enhanced 
treatment for malignant cells, and as carriers 
for targeted drug delivery in cancer therapies. 
Moreover, they have exhibited notable 
antimicrobial efficacy against both Gram-
positive and Gram-negative bacteria [64,72,90]. 
Magnetic nickel and cobalt nanoparticles are 
used as magnetic mirror ,antibacterial activities 
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such as (S. aureus and E. coli bacteria) and 
magnetic properties [41]. These MNPs can also 
be applied in surgery and laser tools due to as 
the reported properties present in this NMNPs 
[13,91]. It has been documented that 
functionally charged nickel nanoparticles 
(NiNPs) have the capability to enhance the 
permeability of cellular membranes, thereby 
facilitating the uptake of target molecules by 
cancer cells. These findings indicate a potential 
mechanism by which Ni NPs could selectively 
target the cytotoxicity of leukemia cancer cells, 
implying their potential applications in various 
biomedical and clinical contexts [65]. 
Consequently, utilizing smaller NiO 
nanoparticles can lead to a more efficient 
application as an antimicrobial agent (Table 2) 
[65,70]. 

5.3. Magnetic properties and degradation of dyes  

Magnetic metallic nickel and cobalt 
nanoparticles offer strong potential for dye 
adsorption. The elimination of dyes from 
wastewater is of paramount importance due to 
their significant presence as pollutants. Organic 
dyes in wastewater degrade water quality and 
can have detrimental effects on human health. A 
majority of these organic dyes are toxic, 

mutagenic, and carcinogenic. Utilizing 
composites of nickel and cobalt nanoparticles 
for the extraction of dyes from aqueous 
solutions holds great promise [75]. Magnetic 
nanoparticles of cobalt and nickel are employed 
for the eradication of Remazol golden yellow 
RNL (RGY) from both aqueous solutions and 
textile wastewater. In the case of textile 
wastewater, cobalt and nickel nanoparticles 
were employed. The findings demonstrated 
substantial decolonization, reaching an 
impressive 88 %. However, the reduction in 
chemical oxygen demand was only around 32 
%, underscoring the efficacy of cobalt and 
nickel nanoparticles in eliminating organic dyes 
from aqueous solutions [75,92]. These 
nanoparticles find application in the separation 
and purification of His-tagged proteins from 
complex mixtures, such as cell lysates. Lee et al. 
have documented the utilization of nickel 
nanoparticles immobilized on activated carbon, 
introducing a novel adsorbent for the individual 
and concurrent adsorption of methylene blue 
and safranin-O [92]. Genhua Zhang documented 
the production of surfactant-free nickel 
nanoparticles, which were subsequently 
applied to eliminate Congo red, an Azo dye 
commonly found in industrial wastewater 
(Table 2) [57,93]. 

 

Table 2. Applications of Ni and Co MNPs  

S.No. Structure  Size  Application  Ref. 

Cobalt MNPs 

Catalytic  

1 Crystalline  5 nm Catalyst for aerobic oxidation of alcohols in liquid phase [85] 

2 Spherical 60 ± 9 nm Catalytic performance on 4-nitrophenol reduction [22] 

3 FCC 30 nm Catalytic decomposition of Orange II [86] 

4 Spherical  80-100 nm Catalyst for Methyl Orange dye degradation [88] 

5 Spherical 4.5-8 nm Recoverable catalyst for hydrolysis of NaBH4  [79] 

6 FCC 10-15 nm Degradation of Remazol brilliant Orange 3R dye [64] 

Biomedical  

7 FCC 10-15 nm  Anti-proliferative effects against cancer cells [64] 
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Table 2. Continued 

 

8 Unfolded structure 50 nm Denaturation and cytotoxicity against PC-12 cell line [70] 

9 Cubic  20-40 nm Cellular compatibility [90] 

10 FCC - Cancer theranostics  [94] 

Degradation of dyes  

11 Sphere  10 nm Removal of textile dye [75] 

12 Spherical  100 nm Rapid degradation of methyl orange azo dye  [93] 

Nickel MNPs  

Catalytic 

13 FCC 10 nm Adsorbent in sewage treatment  [95] 

14 Crystalline  3.2 nm Recoverable catalyst  [96] 

15 Monodisperse  50 nm Histidine tagged proteins  [28] 

16 Crystalline  45 nm Waste water purification  [47] 

17 HCP 5 - 10 nm Active catalysts in the IL dispersion for 1-hexene or 
benzene hydrogenation 

[45] 

18 FCC 23 - 114 
nm 

Magnetic biocatalyst  [55] 

19 FCC 2 - 5 nm Catalyst (Suzuki coupling reactions) [5] 

Biomedical   

20 Crystalline  10-100 nm Magnetic mirror with antibacterial activities [41] 

21 FCC 2-600 nm pH regulator  [13] 

22 FCC 2-42 nm  Antimicrobial activity against gram positive and gram-
negative bacteria  

[65] 
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Figure 3. Applications of Ni and CO MNPs  
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Conclusion 

To sum up, we have summarized the recent 
development of Nickel and Cobalt magnetic 
nanoparticles summarizing various methods of 
synthesis, characterization, composition, and 
applications. There are seven main methods of 
synthesis with each method equally useful 
depending on the required application. The 
composition of these magnetic nanoparticles 
can be varied with different types of substrates 
used. Various characterizations can be used 
that are commonly available for nanoparticles. 
The main applications of these magnetic 
nanoparticles are in the field of biomedical and 
catalysis. The ease of synthesis, commonly 
available starting materials, and diverse 
applications of these Ni and Co magnetic 
nanoparticles has opened new opportunity in 
the field of nanotechnology.   
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