[1]. J. Yaxley, C. Pirrone, Review of the diagnostic evaluation of renal tubular acidosis,
Ochsner Journal,
2016,
16, 525-530. [
Crossref], [
Google Scholar], [
Publisher]
[2]. A. Van der Beek, P.H.E.M. de Meijer, A.E. Meinders, Lactic acidosis: pathophysiology, diagnosis and treatment,
The Netherlands Journal of Medicine,
2001,
58, 128-136. [
Crossref], [
Google Scholar], [
Publisher]
[6]. J. Finsterer, Biomarkers of peripheral muscle fatigue during exercise,
BMC Musculoskeletal Disorders,
2012,
13, 1-13. [
Google Scholar], [
Publisher]
[7]. H. Thangarajah, D. Yao, E.I. Chang, Y. Shi, L. Jazayeri, I.N. Vial, R.D. Galiano, X.L. Du, R. Grogan, M.G. Galvez, M. Januszyk, The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,
Proceedings of the National Academy of Sciences,
2009,
106, 13505-13510. [
Crossref], [
Google Scholar], [
Publisher]
[8]. S.E. Maynard, S.A. Karumanchi, January, Angiogenic factors and preeclampsia,
Seminars In Nephrology, 2011,
31, 33-46. [
Crossref], [
Google Scholar], [
Publisher]
[9]. A. Manouchehri, H. Rashidian, Z. Zakariaei, Severe metabolic acidosis due to massive metformin overdose in a man: a case report,
Oxford Medical Case Reports,
2023,
2023, omad049. [
Crossref], [
Google Scholar], [
Publisher]
[10]. P. Pattharanitima, C. Thongprayoon, T. Petnak, N. Srivali, G. Gembillo, W. Kaewput, S. Chesdachai, S. Vallabhajosyula, O.A. O’corragain, M.A. Mao, V.D. Garovic, Machine learning consensus clustering approach for patients with lactic acidosis in intensive care units,
Journal of Personalized Medicine,
2021,
11, 1132. [
Crossref], [
Google Scholar], [
Publisher]
[11]. J.A. Kraut, I. Kurtz, Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment,
American Journal of Kidney Diseases,
2005,
45, 978-993. [
Crossref], [
Google Scholar], [
Publisher]
[12]. S. Tariq, D. Ismail, M. Thapa, L. Goriparthi, R. Pradeep, K. Khalid, A.C. Cooper, G. Jean-Charles, Chronic obstructive pulmonary disease and its effect on red blood cell indices,
Cureus,
2023,
15, e36100. [
Crossref], [
Google Scholar], [
Publisher]
[14]. G.A. Brooks, The lactate shuttle during exercise and recovery,
Medicine and Science in Sports and Eexercise,
1986,
18, 360-368. [
Crossref], [
Google Scholar], [
Publisher]
[15]. L.B. Gladden, Lactate metabolism: a new paradigm for the third millennium,
The Journal of Physiology,
2004,
558, 5-30. [
Crossref], [
Google Scholar], [
Publisher]
[17]. a) H. Mairbäurl, Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells,
Frontiers in Physiology,
2013,
4, 332. [
Crossref], [
Google Scholar], [
Publisher] b) Al-Rawi, S. S. M., Salahdin, O. D., Al-Alaq, F. T., Abdulazeem, L., H. Kzar, M., Shawky Khattab, E., & Naje, A. S. Antibacterial activity of bacteriocin-isolated from Lactobacillus spp. against some pathogenic bacteria,
Journal of Medicinal and Chemical Sciences,
2023,
6, 702-709. [
Crossref], [
Google Scholar], [
Publisher]
[18]. D.S. Martin, D.Z. Levett, M. Mythen, M.P. Grocott, Caudwell Xtreme Everest Research Group, Changes in skeletal muscle oxygenation during exercise measured by near-infrared spectroscopy on ascent to altitude,
Critical Care,
2009,
13, 1-9. [
Crossref], [
Google Scholar], [
Publisher]
[19]. D.G. Allen, G.D. Lamb, H. Westerblad, Skeletal muscle fatigue: cellular mechanisms,
Physiological Reviews,
2008,
88, 287-332. [
Crossref], [
Google Scholar], [
Publisher]
[20]. G. Van Hall, Lactate as a fuel for mitochondrial respiration,
Acta Physiologica Scandinavica,
2000,
168, 643-656. [
Crossref], [
Google Scholar], [
Publisher]
[21]. D. Chasiotis, K. Sahlin, E. Hultman, Regulation of glycogenolysis in human muscle at rest and during exercise,
Journal of Applied Physiology,
1982,
53, 708-715. [
Crossref], [
Google Scholar], [
Publisher]
[22]. L.B. Gladden, A lactatic perspective on metabolism,
Medicine and Science in Sports and Exercise,
2008,
40, 477-485. [
Crossref], [
Google Scholar], [
Publisher]
[23]. D.G.A.M. Bianchetti, G.S. Amelio, S.A.G. Lava, D-lactic acidosis in humans: systematic literature review,
Pediatric Nephrology,
2018,
33, 673–681. [
Crossref], [
Google Scholar], [
Publisher]
[24]. K. Sahlin, Muscle energetics during explosive activities and potential effects of nutrition and training,
Sports Medicine,
2014,
44, 167-173. [
Crossref], [
Google Scholar], [
Publisher]
[25]. J.A. Smith, K.A. Murach, K.A. Dyar, J.R. Zierath, Exercise metabolism and adaptation in skeletal muscle,
Nature Reviews Molecular Cell Biology,
2023,
24, 607–632. [
Crossref], [
Google Scholar], [
Publisher]
[26]. A. Armand, E. Rochette, V. Grèze, S. Monzy, C. Dualé, B. Pereira, F. Isfan, E. Doré, P. Girard-Monin, C. Pegon, E. Labraise, Fitness and metabolic response to exercise in young adult survivors of childhood lymphoma,
Supportive Care in Cancer,
2023,
31, 358. [
Crossref], [
Google Scholar], [
Publisher]
[27]. P. De Feo, C. Di Loreto, P. Lucidi, G. Murdolo, N. Parlanti, A. De Cicco, F. Piccioni, F. Santeusanio, Metabolic response to exercise,
Journal of Endocrinological Investigation,
2003,
26, 851-854. [
Crossref], [
Google Scholar], [
Publisher]
[28]. G.A. Brooks, Importance of the 'crossover' concept in exercise metabolism,
Clinical and Experimental Pharmacology & Physiology, 1997,
24, 889-895. [
Crossref], [
Google Scholar], [
Publisher]
[29]. X. Li, Y. Zhang, L. Xu, A. Wang, Y. Zou, T. Li, L. Huang, W. Chen, S. Liu, K. Jiang, X. Zhang, Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease,
Cell Metabolism,
2023,
35, 200-211. [
Crossref], [
Google Scholar], [
Publisher]
[30]. X. Li, Y. Yang, Zhang, Lactate metabolism in human health and disease,
Signal Transduction and Targeted Therapy, 2022,
7, 305. [
Crossref], [
Google Scholar], [
Publisher]
[31]. J. Zhang, Q. Su, S.C. Li, Qigong exercise balances oxygen supply and acid-base to modulate hypoxia: A perspective platform toward preemptive health & medicine,
Medical Sciences,
2023,
11, 21. [
Crossref], [
Google Scholar], [
Publisher]
[32]. I.T. Ali, N.I.A. Haddad, E.A. Hussein, Correlation of Serum Adiponectin and C-reactive protein with Other Biochemical Parameters in Iraqi Pregnant Women,
Chemical Methodologies,
2022,
6, 357-365. [
Crossref], [
Google Scholar], [
Publisher]
[33]. C. Juel, Lactate/proton co‐transport in skeletal muscle: regulation and importance for pH homeostasis,
Acta Physiologica Scandinavica,
1996,
156, 369-374. [
Crossref], [
Google Scholar], [
Publisher]
[34]. Z. Daverio, A. Balcerczyk, G.J. Rautureau, B. Panthu, How warburg-associated lactic acidosis rewires cancer cell energy metabolism to resist glucose deprivation,
Cancers,
2023,
15, 1417. [
Crossref], [
Google Scholar], [
Publisher]
[35]. G.A. Brooks, A.D. Osmond, J.A. Arevalo, J.J. Duong, C.C. Curl, D.D. Moreno-Santillan, R.G. Leija, Lactate as a myokine and exerkine: drivers and signals of physiology and metabolism,
Journal of Applied Physiology,
2023,
134, 529-548. [
Crossref], [
Google Scholar], [
Publisher]
[37]. a) B. Krumm, F. Luisier, A. Rapillard, R. Faiss, Is recovery optimized by using a cycle ergometer between ski-mountaineering sprints?,
International Journal of Sports Physiology and Performance,
2023,
1, 1-4. [
Crossref], [
Google Scholar], [
Publisher] b) R. Alimoradzadeh, N. Moosavi, A. Karimkoshteh, Z. sadeghi, M. Milanifard, A. Ismaili, Investigation of the chemistry of metformin by targeting the Nrf2 signaling pathway (A response surface methodology approach),
Chemical Methodologies,
2022,
6, 166-173. [
Crossref], [
Google Scholar], [
Publisher]
[38]. J. Oguche, A. Ameh, T. Bello, N. Maina, Prospect of deep eutectic solvents in lactic acid production process: a review,
Journal of Chemical Reviews, 2023,
5, 96-128. [
Crossref], [
Google Scholar], [
Publisher]
[39]. D.M. Jett, K.J. Adams, B.A. Stamford, Cold exposure and exercise metabolism,
Sports Medicine,
2006,
36, 643-656. [
Crossref], [
Google Scholar], [
Publisher]
[40]. R.A. Robergs, F. Ghiasvand, D. Parker, Biochemistry of exercise-induced metabolic acidosis,
American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,
2004,
287, R502-R516. [
Crossref], [
Google Scholar], [
Publisher]
[41]. K. Miazga, O. Szaluś-Jordanow, M. Czopowicz, M. Żmigrodzka, O. Witkowska-Piłaszewicz, A. Moroz-Fik, M. Mickiewicz, J. Wilczak, A. Cywińska, Exercise-induced haematological and blood lactate changes in whippets training for lure coursing,
Journal of Veterinary Research,
2023,
67, 139-146. [
Crossref], [
Google Scholar], [
Publisher]
[42]. D.G. Allen, G.D. Lamb, G.D. H. Westerblad, Skeletal muscle fatigue: cellular mechanisms,
Physiological Reviews,
2008,
88, 287-332. [
Crossref], [
Google Scholar], [
Publisher]
[43]. R.C. Poole, A.P. Halestrap, Transport of lactate and other monocarboxylates across mammalian plasma membranes,
American Journal of Physiology-Cell Physiology,
1993,
264, C761-C782. [
Crossref], [
Google Scholar], [
Publisher]
[44]. J. Seheult, G. Fitzpatrick, G. Boran, Lactic acidosis: an update,
Clinical Chemistry and Laboratory Medicine (CCLM),
2017,
55, 322-333. [
Crossref], [
Google Scholar], [
Publisher]
[46]. G.A. Brooks, Cell–cell and intracellular lactate shuttles,
The Journal of Physiology,
2009,
587, 5591-5600. [
Crossref], [
Google Scholar], [
Publisher]
[47]. E. Børsheim, R. Bahr, Effect of exercise intensity, duration and mode on post-exercise oxygen consumption,
Sports Medicine,
2003,
33, 1037-1060. [
Crossref], [
Google Scholar], [
Publisher]
[48]. E. Bianchi, G. Guidotti, M. Soccio, V. Siracusa, M. Gazzano, E. Salatelli, N. Lotti, Biobased and compostable multiblock copolymer of poly (l-lactic acid) containing 2, 5-furandicarboxylic acid for sustainable food packaging: the role of parent homopolymers in the composting kinetics and mechanism,
Biomacromolecules,
2023,
24, 2356-2368. [
Crossref], [
Google Scholar], [
Publisher]
[49]. A. Obstfeld, A Role for Recruited Myeloid Cells in Obesity Induced Fatty Liver Disease, Columbia University,
2011. [
Google Scholar], [
Publisher]
[50]. A.E. Jeukendrup, W.H.M. Saris, A.J.M. Wagenmakers, Fat metabolism during exercise: a review. Part I: fatty acid mobilization and muscle metabolism,
International Journal of Sports Medicine,
1998,
19, 231-244. [
Crossref], [
Google Scholar], [
Publisher]
[51]. P. Knuiman, M.T. Hopman, M. Mensink, Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise,
Nutrition & Metabolism,
2015,
12, 1-11. [
Crossref], [
Google Scholar], [
Publisher]
[52]. K. Sahlin, R.C. Harris, Control of lipid oxidation during exercise: role of energy state and mitochondrial factors,
Acta Physiologica,
2008,
194, 283-291. [
Crossref], [
Google Scholar], [
Publisher]
[53]. J.D. Lalau, Lactic acidosis induced by metformin: incidence, management and prevention,
Drug Safety,
2010,
33, 727-740. [
Crossref], [
Google Scholar], [
Publisher]
[54]. R. Mahmood, D. Maccourtney, M. Vashi, A. Mohamed, A case of metformin-associated lactic acidosis,
Cureus,
2023,
15, e38222. [
Crossref], [
Publisher]
[55]. S. Langa, A. Peirotén, J.A. Curiel, A.R. de la Bastida, J.M. Landete, Isoflavone metabolism by lactic acid bacteria and its application in the development of fermented soy food with beneficial effects on human health,
Foods,
2023,
12, 1293. [
Crossref], [
Google Scholar], [
Publisher]
[56]. J.M. Macharia, Z. Kaposztas, T. Varjas, F. Budán, A. Zand, I. Bodnar, R.L. Bence, Targeted lactate dehydrogenase genes silencing in probiotic lactic acid bacteria: A possible paradigm shift in colorectal cancer treatment?,
Biomedicine & Pharmacotherapy,
2023,
160, 114371. [
Crossref], [
Google Scholar], [
Publisher]
[57]. Y.D. Nechipurenko, D.A. Semyonov, I.A. Lavrinenko, D.A. Lagutkin, E.A. Generalov, A.Y. Zaitceva, O.V. Matveeva, Y.E. Yegorov, The Role of acidosis in the pathogenesis of severe forms of COVID-19,
Biology,
2021,
10, 852. [
Crossref], [
Google Scholar], [
Publisher]