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A B S T R A C T 

The existence of the carcinogenic agent hydrazine poses a serious hazard to 
environmental wellbeing. Consequently, effective hydrazine detection in aqueous 
conditions becomes crucial. Novel sensing electrodes are being created through 
modifications using conducting polymers and nanomaterials, such as carbon-
based nanomaterials, metallic nanoparticles, and metal oxide nanoparticles, in 
order to improve the selectivity and sensitivity of hydrazine detection. This review 
article offers a thorough assessment of the most recent developments in 
conducting polymer nanocomposites-based electrochemical sensing electrodes for 
hydrazine detection. These innovative electrodes are made to keep low detection 
limits while providing better sensitivity, selectivity, and durability. The review 
intends to provide information about the creation, evaluation, and performance of 
the sensing electrodes as well as their potential for practical use. 
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1. Introduction 

cological contamination is one of the 
major issues our society is confronting. 
The rapid intensification in the levels 
of environmental pollution over recent 
decades has resulted in growing 

concern for human health and overall 
ecosystems [1]. The primary purpose of 
increasing dangerous toxins in the environment 
is caused by human activities and various 
industrial processes [2, 3]. As a result, people 
are exposed to harmful chemicals through 
several sources [4, 5]. A significant class of toxic 
pollutants includes heavy metals, fluorinated 
carbons, and organic and inorganic pollutants 
[6, 7]. These pollutants have harmful effects on 
health, triggering some severe problems, and 
prolonged exposure to these pollutants can be 
life-threatening [8, 9]. Hydrazine (N2H4) is a 
vital laboratory and manufacturing chemical 
discovered by German scientists. Hydrazine is 
commonly used in numerous fields, such as 
catalysis, medical, chemical, fabric dyes, 
farming industries, and as a monopropellant 
and bipropellant rocket fuel in aerospace 
industries [9-11]. Even though hydrazine (HZ) 
has various uses, prolonged exposure can harm 
one’s health. Several industries release HZ in 
vast amounts from where it can enter the 
drinking water supply every year. It is 
carcinogenic, neurotoxic, and can harm the 
liver, kidneys, brain, and other vital organs of 

the human body [12]. According to the World 
Health Organization (WHO), hydrazine is 
categorized as B2 carcinogenic [13, 14]. Early 
HZ detection in aqueous media is essential and 
critical. Therefore, the hydrazine sensing at a 
low concentration has been the central area of 
research in the last few years [15]. Hydrazine is 
detected using various analytical procedures, 
including colorimetry, chromatography, 
fluorescence, chemiluminescence, titration, and 
electrochemistry [16, 17]. The electrochemical 
system has several advantages over other 
approaches, including ease of use, lower costs, 
transferability, quick processes, high selectivity, 
in situ reductions, and an extensive 
measurement range, making it more prominent 
among the available techniques. 
Electrochemical sensors were first used in the 
1950s, and since that, electrochemistry has 
made significant advances. The progress in 
electrochemical engineering and new electrode 
materials have offered possible practical and 
appealing solutions [18, 19]. The performance 
of the electrochemical sensor is related to the 
material of the working electrode [20], and it 
has made significant progress in recent years 
by improving the detecting capabilities of the 
working electrode [21]. The revolutionary work 
of Alan J. Heeger, Alan G. MacDiarmid, and 
Hideki Shirakawa, for which they were awarded 
the Nobel Prize in Chemistry in 2000, is 
credited with the first use of conducting 
polymers in electrochemistry. They discovered 
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that when some organic polymers, notably 
polyacetylene, were chemically doped, they 
may display electrical conductivity. Their 
discovery was significant because it called into 
question the prevailing wisdom that only 
metals and inorganic materials could 
successfully conduct electricity. Conducting 
polymers opened up new avenues for the 
production of lightweight, flexible, and simply 
processable electrically conductive materials. A 
key issue in electrochemical sensor design is 
understanding the surface structure and 
reactivity. Understanding the fundamental 
processes that influence sensor response leads 
to the creation of electroanalytical devices with 
more excellent sensitivity, selectivity, high 
stability, and lower detection limits in most 
circumstances. Thus, rapid and reliable 
electrochemical sensors detecting low 
concentrations can improve real-time 
environmental monitoring [22, 23].  
Conducting polymers (CPs) have been 
investigated extensively used as a transducer in 
electrochemical sensors to enhance speed and 
sensitivity, and they are proving to be quite 
effective [24]. The properties of CPs like 
tunable conductivity, facile synthesis, and easy 
modification, environmentally friendly, 
intensely sensitive to a wide range of HZ at 
ambient temperature, and economical make 
them the most appropriate material for use in 
electrochemical sensing [25]. By incorporating 
functional nanomaterials into conducting 
polymers, it is possible to efficiently overcome 
the constraints of these polymers in their 
natural form, notably in terms of 
electrochemical sensing. Nanomaterials have 
distinct physical and chemical properties that 
make them ideal for sensor applications [26]. 
The general properties of conducting polymers 
can be considerably improved by introducing 
nanomaterials such as carbon nanomaterials 
and metal/metal oxide nanoparticles as 
dopants. The nanoparticles incorporation into 
the composite material has various advantages. 
First, nanoparticles have increased electrical 
conductivity, allowing for better conductivity in 
conducting polymers. Second, their increased 
surface area improves the interaction between 
composite material and the analyte in 
electrochemical sensing. Finally, nanoparticles 

have superior electrochemical activity, which 
leads to improved sensor performance. [27]. 
They have higher electrical conductivity, a 
bigger surface area, and better electrochemical 
activity [28]. As a result, electrochemical 
sensors that have been enhanced with 
conducting polymers and nanomaterials 
excellent conductivity, sensitivity, selectivity, 
and solid adsorption capabilities. The 
synergistic benefits of combining conducting 
polymers and nanoparticles in nanocomposites 
have the potential to revolutionise the area of 
electrochemical sensors [29]. The synergy 
between CPs nanocomposites is expected to 
bring exciting advantages in electrochemical 
sensors [30, 31].  

In the recent past, many review papers have 
been published on electrochemical sensing of 
hydrazine targeting one specific material of 
interest, thus leaving a critical and primarily 
used class of materials, conducting polymers, 
and their nanocomposite. Therefore, it is 
essential to mention the range of conducting 
polymers and nanomaterials deployed for HZ 
electro-oxidation. Research is still required on 
the fundamental interactions of HZ with various 
CPs/nanomaterials, which could have 
promising implications in HZ detection. This 
review study discusses the sensing properties 
of conducting polymers and the effects of 
nanofiller dispersion and compatibility on 
nanocomposite properties, including the 
oxidation mechanism and pH factor for 
identifying, analyzing, and monitoring the most 
dangerous chemical hydrazine. This article 
provides platforms for new conceptual 
frameworks, and constructs diverse results. It is 
important to note that different analytical 
terminology is used in the later section of this 
review. Readers need to learn and grasp these 
terms used in studies. Various hydrazine 
analyses are performed every year, and 
conclusions are drawn based on the findings. 
Following the calculations and decisions, it is 
critical to guarantee that the method carried 
out produces the intended precise outcome 
with more precision. Therefore, method 
validation is the process of establishing written 
evidence that a test procedure fits the intended 
purpose in terms of quality, reliability, and
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Figure 1. Definition of few important method validation parameters used in analysis of hydrazine 

 

consistency of results. A few important 
characteristics of method validations are 
displayed in Figure 1. 

2. Electrochemical Approach for Sensing and 
Challenges in Electrochemical Sensing 

Due to the sheer surge in pollution, sensors 
have become more important in protecting the 
environment [31]. Every sensor comprises a 
transducer that converts chemical inputs into 
electrical signals and a chemical interface. The 
analyte interacts chemically with the surface, 
causing a change in physical or chemical 
properties, and the transducer is a device that 
responds to a specific analyte by providing 
output. Sensor key benefits are ease of use, 
small size, and likely low cost [32]. An 
electrochemical sensor is a tool that alters 
electrochemical data into an analytically 

convenient signal involving a free electron 
transfer between an electrode and a phase that 
may be liquid or solid [33, 34]. The 
electrochemical setup consists of a counter (CE) 
electrode, a reference (RE) and a working 
electrode (WE). The counter electrode (CE) 
offers electron flow to complete the circuit. A 
platinum wire is mainly used as the counter 
electrode. In contrast, the reference electrode 
provides stable voltage within the 
electrochemical cell. The reference electrode is 
usually comprised of Ag/AgCl. The working 
electrode is the essential component of the 
whole setup, at the surface of working 
electrode, a reaction of interest occurs. 
Electrochemical sensing is based on the 
oxidation of hydrazine. They are generally 
executed by monitoring the working electrode’s 
potential at a static value and observing the 
current as a function of time. The current 
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response reveals the HZ concentration as it 
goes through the sensor. Primarily used 
analytical procedures for HZ include 
voltammetry, chronoamperometry, and 
potentiometry. Cyclic voltammetry, square 
wave voltammetry, and differential pulse 
voltammetry have all been widely used among 
these approaches. The defining feature of cyclic 
voltammetry, a widely used electrochemical 
sensing method, is a prominent oxidation peak. 
It reflects the oxidation of a molecule 
electrochemically at a particular voltage. It is a 
valuable instrument for quantitative 
investigation because the height of the peak is 
related to the concentration of the molecule 
being oxidised. In cyclic voltammetry, the term 
"scan rate" describes the pace at which the 
potential is swept. It influences the size and 
shape of the oxidation peak and can be utilized 
to enhance the measurement's sensitivity and 
resolution. The properties of the 
electrochemical sensor mainly depend upon the 
material of the working electrode [35]. 
However, orthodox bare electrodes unveil low 
sensitivity, selectivity, poor reliability, sluggish 
electron transfer kinetics, and high over 
potential (requiring more energy to drive the 
reaction) for the oxidation of hydrazine [36, 
37]. Complex matrices, intrusion from co-
existing species, poor detection limits, stability 
issues, calibration issues, and high costs are 
some of the obstacles unique to electrochemical 
sensing. These difficulties may reduce the 
sensor response's accuracy and dependability. 
To circumvent these challenges, conducting 
polymers and nanomaterials are being 
employed to change the interface of 
electrochemical sensors [38, 39]. The use of 
conducting polymers, metals, metal oxide, and 
carbon nanoparticles-based electrodes has 
additional benefits, such as lowering the over 
potential for hydrazine oxidation and speeding 
up interfacial electron flow between hydrazine 
and electrode surface providing high sensitivity 
and selectivity [40, 41]. 

3. Electrochemical Oxidation Mechanism of 
Hydrazine on Surface of Working Electrode 

The working electrode surface is used as the 
reaction site to understand the charge 

transport properties of CPs nanocomposite 
when exposed to HZ [42]. It is crucial to learn 
about the surface reaction of an electrode since 
it affects the rate as well as the amount of 
electron transport between the electrode and 
the solution. The kinetics of the process, such as 
the pace at which ions diffuse to the electrode 
surface and the rate at which electrons pass 
between the electrode and the solution, are also 
influenced by the nature of the reaction. 
Therefore, optimizing electrochemical 
processes and building effective 
electrochemical systems require a thorough 
understanding of the surface reaction. The 
system's electrochemical behavior, including 
the electrode's potential and the surface 
current density, is likewise impacted by the 
surface response. It is possible to learn more 
about the underlying electrochemical 
mechanisms and the surface reaction by 
examining it. The HZ oxidation has been studied 
extensively on several electrodes to understand 
the electro-oxidation reaction mechanism. 
Ruiyang Miao et al. investigated the oxidation 
mechanism of HZ and found that it is a four-
electron transfer process with the release of 
nitrogen and protons. Adsorption of hydrazine 
molecules onto the electrode surface is the 
initial step in the electrochemical oxidation of 
hydrazine. It is revealed that the unprotonated 
form of HZ (N2H4) is only electroactive while 
the N2H5+ (hydrazinium ion), which is 
protonated form, is electro-inactive [43]. The 
current build after the reaction is observed and 
used to calculate important data such as 
concentrations from the sample. The 
mechanism specifics can change based on the 
experimental parameters and the electrodes 
characteristics. To create the electrochemical 
sensors for hydrazine detection and similar 
applications, it is essential to comprehend this 
mechanism. Adel A Ismail et al. also studied the 
hydrazine oxidation mechanism on mesoporous 
Au/ZnO nanocomposite electrodes. The electro-
oxidation reaction of hydrazine was determined 
and calculated, revealing a four-electron 
transfer process with the release of nitrogen 
(N2) gas as an end product [44]. Similar studies 
carried out by various researchers [45-48] 
unfold the exact oxidation mechanism. 
Therefore, it is commonly accepted that the 
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N2H4 oxidation is a four-electron transfer 
procedure with nitrogen discharge. The 
reaction mechanism is given below. The 
electrochemical oxidation of hydrazine follows 
a complicated mechanism that involves the 
creation of numerous intermediates. However, 
the design of hydrazine-based industrial 
processes and the creation of effective 
electrochemical sensor depend on a thorough 
understanding of this mechanism. 
 
Anode:   N2H4 +4OH-               N2+ 4H2O + 4e- 

Cathode:  O2+ 2H2O +4e-                4OH 

Overall Reaction: N2H4 +O2                2H2O+N2 

As discussed earlier, the rate of diffusion and 
electron transfer in hydrazine oxidation is 
affected by a number of parameters, including 
the type of the electrode, the concentration of 
hydrazine in the solution, and the presence of 
other species in the solution. Numerous 
variables, such as the electrode surface's 
composition, the solution's pH, and the 
presence of other species, might affect the 
kinetics of hydrazine oxidation. For instance, 
the surface area of the electrode, the 
hydrazine's diffusion coefficient, and the pace at 
which the solution is stirred can all affect how 
quickly hydrazine diffuses to the electrode 
surface.  

4. Effect of pH on Hydrazine Oxidation 

The HZ oxidation is a pH-dependent procedure 
and a crucial factor to understand as it affects 
the HZ oxidation current and potential. The pH 
value was evaluated and optimized in 
numerous studies to enhance sensitivity [49, 
50]. A buffer solution can be employed as an 
electrolyte in electrochemical sensing to give 
the electrochemical process a stable pH 
environment. To achieve precise and 
trustworthy measurements, it is crucial to keep 
the pH constant. The buffer solution steps in at 
this point. The change effect in pH on the 
oxidation of hydrazine was determined by 
Marya Khan et al. detected hydrazine on the 
ZnO nanosheets-based FET sensor. The 

targeted range of pH range was 5 to 9. The 
response of hydrazine sensor improved 
significantly as the pH of the buffer solution 
was raised from 7 to 8. Given that the pKa value 
of hydrazine is (pKa =7.9) when the pH was 
near to the pKa value, HZ was in a neutral state, 
making oxidation easier, and providing 
optimum sensing response. At pH> pKa, 
hydrazine converted into its deprotonated 
form, which hindered its oxidation and resulted 
in a lower peak current. Hence the optimum pH 
for maximum current sensitivity was found to 
be 7.4 [51]. Seul Ki Kim found a pH effect on 
hydrazine oxidation by changing pH from 5 to 
10 [52]. The pH effect was also studied by 
Fugang Xu et al. with different pH values of PBS 
buffer from 5 to 10. Electric current builds as 
the pH increases from 5 to 6, and an oxidation 
peak appears. When pH changes from 7 to 10, 
an increase followed by a decrease in the 
current is observed. The primary response 
occurs at pH near the pKa value of HZ. This 
confirms that current shifts at various pH 
values are linked to hydrazine pKa. The HZ 
becomes protonated when the pH of the PBS 
buffer solution falls below pKa, resulting in a 
mild oxidation current [53]. As a result, the 
ideal pH for phosphate buffer solutions was 
determined to be >7, and it is frequently 
employed in the electrochemical detection of 
hydrazine. 
5. Role of Conducting Polymers and Their 
Sensing Mechanism 

Conducting polymers (CPs) are a type of 
organic molecule with many applications in 
electrochemical sensors because of their 
underlying physicochemical attributes [55]. 
Different kinds of CPs, as depicted in Figure 2, 
include PPY (Polypyrrole), PANI (Polyaniline), 
polythiophene (PTh), poly (3,4-ethylene 
dioxythiophene) (PEDOT), and poly(3-
hexylthiophene) (P3HT) have structural 
characteristics, high conductivities, fast 
response time, good sensitivity, and a 
selectivity towards analytes which make them 
the most appropriate materials used in 
electrochemical sensors [56]. Conducting 
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Figure 2. Structures of some important conducting polymers [86]

 

polymer sensing mechanisms can involve 
oxidation-reduction reactions, adsorption, and 
desorption of the analytes ions [57]. When a CP 
is added to a solution containing target 
molecules, its charge transport capabilities 
change (movement of electric charge from one 
end to the other in the electrochemical cell), 
affecting the CP conductivity, which can be 
evaluated using electrochemical techniques. 
Understanding the charge transport properties 
of electrochemically active CPs nanocomposites 
can be interesting. Conducting polymer has a 
backbone of π electron system responsible for 
their conductivity [58]. Though the π electrons 
delocalization (alternating single and double 
bond) along the polymer chain is not enough to 
acquire high conductivities, a doping process is 
required to enhance the conductivity of 
polymers [59]. Increasing the doping level 
increases more charges in the polymer and, 
consequently, outcomes of better conductivity 
[60]. The doping process of conducting polymer 
is achieved by the protonation of nitrogen 
atoms present in the polymer structure [61]. It 

is indeed possible to alter the properties of CPs 
by hybridizing them with different materials, 
which as a result, enhances the main polymer 
chain performance. Therefore, it is feasible to 
make a CPs composite out of highly conductive 
nanoparticles. The choice of nanoparticles is 
critical for achieving the desired 
nanocomposite characteristics. For the desired 
qualities, the nanofiller type, shape, and surface 
area must be managed [62]. The final 
nanocomposite features may also vary due to 
the nanoparticles interaction with polymer 
matrix. Another essential aspect of the 
polymeric nanocomposite is the nanoparticles 
dispersion in the matrix to further strengthen 
its inclusive sensing properties. The even 
distribution of nanoparticles throughout the 
matrix improves sensitivity and selectivity [63]. 
Furthermore, disseminating nanoparticles 
within the polymer inhibits nanoparticle 
aggregation, resulting in a larger surface area. 
The most widely used nanoparticles are 
metal/metal oxide nanoparticles and carbon 
nanoparticles (S/MWNTs, Graphene) [64]. 
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Figure 3. Diagram of multilayer graphene and carbon nanotubes [87] 

 

Conducting polymer nanocomposites has a 
huge influence on the electrochemical sensor 
research; they demonstrate superior 
performance to conducting polymers in bulk 
due to the large surface-area-to-volume ratio 
[65-67]. 

6. Nanoscale Carbon-Based Materials 

Carbon nanomaterials (CNMs) have become a 
popular material for electrochemical sensors in 
recent years. The extraordinary properties of 
two allotropic forms of CNMs, i.e. Carbon 
nanotubes (CNTs) and Graphene makes them 
the most appropriate material for 
electrochemical applications due to the large 
surface area, high electrical conductivity, and 
effective electrocatalytic behaviour as they 
possessed sp2 hybridized structures Figure 3 
[69, 70]. When dispersed in the CP matrix, 
CNMs significantly increased the rate of 
chemical oxidation because of their greater 
surface areas [71, 72]. CNTs have high aspect 
ratios and ID structures, while graphene 
possesses a 2D structure, and both show high 
sensitivity towards any changes in their 
chemical surroundings [73, 74]. Moreover, their 
electron transport properties also make them 
suitable materials for sensors [75]. Graphene 
(2D) and various types of graphene (Nano 
flakes, Nanoplatelets, Reduced graphene, 
Oxidized graphene, etc.) are the ideal materials 
for electrochemical sensing [76, 77]. Their 
exceptional properties (conductivity, large 
specific surface area, high sensitivity and 
selectivity, low detection limits, and durable 

stability) make them essential for modifying 
electrode materials to detect hydrazine at low 
concentrations [78]. Furthermore, chemical 
modification is a common way to enhance the 
CNTs properties and graphene [79, 80]. The 
existence of reactive groups on the CNTs and 
graphene surface permits them to be electro-
catalytically active. Incorporating carbon 
nanomaterials in the polymer matrix with 
improved dispersion and strong adhesion are 
severe issues in gaining further improved 
properties [81]. Incorporating CNMs in 
conducting polymers significantly increases 
their electrical conductivity by several 
magnitudes. The enhanced conductivity can 
increase the electron transfer rate in 
electrochemical sensors depending on the CNPs 
dispersion and aspect ratio [82-86]. 
7. Metal/Metal Oxide Nanoparticles 

Metal nanoparticles have drawn much interest 
because their inherent size-dependent 
properties differ from comparable bulk 
materials [88]. They have vital applications in 
catalysis and sensing. Metal nanoparticles like 
gold, silver, copper, cobalt, iron, etc. possess a 
large surface area to volume ratio, higher 
electron transfer rate, large surface energies, 
and chemical modification [89, 90]. They are 
massively used as a nanofiller in conducting 
polymer matrix design for environmental 
applications. The size, shape, and chemical 
properties of nanoparticles (NPs) utilised in 
polymer materials vary. These NPs have the 
potential to drastically alter the properties of 
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the resulting polymer materials by influencing 
surface chemistry, physical complexity, and 
chemical structure. The properties of polymeric 
nanocomposites are determined by the 
interactions between the NPs and the polymer 
matrix. When nanoparticles (NPs) are 
dispersed in a polymer matrix, they interact 
which can change the polymer's behaviour, 
shape, charge distribution, and bond 
dispersion. Finally, the NPs incorporation into 
polymer materials can result in significant 
improvements in performance characteristics. 
The metal nanoparticles can be protected and 
stabilised by the polymeric matrix, which can 
further stop aggregation and degradation. This 
could increase the electrochemical sensing 
system's durability and reproducibility. [91, 
92].  As a case in point, Chanaka Sandaruwan et 
al studied the effect of palladium nanoparticles 
by dispersing them in a polyaniline matrix for 
sensing application. The study's findings 
showed that the addition of Pd nanohybrids 
significantly affected PANI's capacity for 
sensing. In particular, compared to pure PANI, 
the PANI/Pd nanohybrids showed improved 
sensitivity and selectivity toward moisture and 
hydrogen detection. There are several 
explanations for the nanohybrids enhanced 
sensory abilities. The Pd nanoparticles, first and 
foremost, function as catalytic sites that 
encourage the dissociation of water molecules 
and hydrogen molecules. This makes it easier 
for them to interact with PANI, which causes a 
stronger reaction. Additionally, Pd 
nanoparticles increase the nanocomposite's 
surface area and conductivity, improving its 
sensing capabilities 
Metal oxide nanoparticles have been used in 
sensing applications since the early 1990s and 
have gained much attention in the 
electroanalysis of HZ [93]. They have been 
integrated into conducting polymer matrix due 
to their better electrocatalytic, thermal, and 
chemical properties [94, 95]. The conducting 
polymer and metal oxide nanocomposite form 
heterojunction that can be very sensitive to the 
analyte [96, 97]. Such unique characteristics of 
metal and metal oxide nanoparticles make them 
desirable for use as reinforcement in polymer 
composites. Furthermore, leaching or 
degradation of the polymer chains of 

conducting polymers can reduce their stability 
and long-term performance. Metal, metal oxide, 
and carbon nanomaterials can give the polymer 
matrix mechanical support, preventing the 
detachment or dissolution of the polymer 
chains. Moreover, they can shield the polymer 
from elements that could eventually cause it to 
decay, such as moisture, oxygen, and the UV 
light. Longer sensor lifespan and dependable 
sensing performance are made possible by the 
nanocomposite's improved stability. 

8. Binary Composites of Conducting 
Polymers Composites for Hydrazine Sensing 

Materials made of two different components 
are referred to as binary composites. The nano 
filler’s dispersion and the interfacial linkage 
between filler and polymer matrix are vital to 
improving the polymer matrix’s sensing 
properties. Nanofiller have diverse properties, 
and their addition to conducting polymer leads 
to the effectiveness of CPs properties [98-100]. 
The advanced electrode based on binary 
composition for the electrochemical sensing of 
hydrazine is discussed here. 

8.1 Silver nanoparticles-CPs 

Silver nanoparticles (AgNPs) have high 
conductivity and excellent electrocatalytic 
properties than other metal nanoparticles 
[101]. It is the favorite material to be 
incorporated in a conducting polymer matrix to 
enhance its overall sensing properties [102]. 
The potential of silver nanoparticle-conducting 
polymer nanocomposites in sensing 
applications has been thoroughly investigated. 
These substances combine the electrical 
conductivity of polymer matrix with the large 
surface area and catalytic capabilities of the 
silver nanoparticles to produce a material that 
is extremely sensitive to the presence of 
analytes. Singh et al. prepared a binary 
nanocomposite of AgNPs/polyaniline by 
photolysis of aniline to polyaniline deposited in 
indium tin oxide surface (ITO). The synthesized 
nanocomposite was used as the electrode 
material to detect low concentrations of 
hydrazine. The solution was kept under the UV 
light at a specific wavelength for 12 hours 
during the in situ polymerization process.
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ITO/PANI/AgNPs electrode was tested for 
hydrazine detection using Differential pulse 
voltammetry (DPV). The DPV technique was 
carried out in 0.1 M PBS (pH=7.0), revealing an 
enhanced peak at 0.12V.  The HZ concentrations 
were used from 0.0010-0.50 mM with an 
increase in concentration, the increase in the 
corresponding peak was observed, revealing 
the sensitive nature of prepared 
nanocomposites due to the nanofiber 
morphology of the PANI matrix and the 
presence of silver nanoparticles in the matrix 
[103]. P. Paulraj et al. attempted to incorporate 
silver NPs in the polyaniline matrix by 
interfacial polymerization. The prepared 
nanocomposite was used as an electrode 
material for the electrocatalytic detection of 
hydrazine at very low concentrations using a 
glassy carbon electrode. The electrocatalytic 
oxidation of hydrazine revealed a better 
response towards hydrazine sensing showing 
the hydrazine potential at 0.4 V with a more 
significant oxidation peak current in PBS sol at 
8 compared to bare glassy carbon electrode. By 
further increasing the hydrazine concentration, 
from 20 µM to 80 µM, the increase in oxidation 
current peak was observed confirming the 
sensitive nature of the modified electrode 
[104]. Ghanbari et al. (2014) prepared binary 
nanocomposite in two steps by 
electrodepositing silver nanoparticles on 
polypyrrole (PPy) nanofiber on a glassy carbon 
electrode (Ag/PPy/GCE) for HZ sensing. The 
AgNPs were dispersed uniformly in the 
polymer matrix to achieve high electrocatalytic 
properties. The cyclic voltammetry (CV) 
method was deployed to study the 
electrocatalytic behaviour and electron transfer 
rate of PPy/Ag nanocomposites in 0.01 M HZ 
and 0.1 M Na2SO4 solution. The 64.5 µA mM−1 of 
HZ oxidation current was observed for 0.0005-
0.001 mM and 11.4 µA mM−1 for 0.001 to 0.01 
mM concentration. The detection limit for HZ 
concentration was found to be 0.20 µM. 
Moreover, chronoamperometry was deployed 
to find the diffusion coefficient of the working 
electrode. Hydrazine’s diffusion coefficient was 
calculated to be 2.64 ×106 cm2.s1. The sensor 
also has outstanding selectivity, reproducibility, 
and stability. Arguably, silver nanoparticles 
catalytic activity in hydrazine detection entails 

boosting surface adsorption, promoting 
electron transfer and speeding up the oxidation 
reaction. When silver nanoparticles are 
included in the conducting polymer matrix, 
these catalytic capabilities help to improve 
sensitivity, lower detection limits, and more 
effectively detect hydrazine. The combined 
synergic effect of PPy nanofibers and silver 
nanoparticles proven as substantial electrode 
material for HZ sensing. Therefore, the use of 
AgNPs in the conducting polymers matrix is 
endorsed as a positive selection towards the 
development of a novel class of electrode 
materials for hydrazine detection [105]. It is 
particularly interesting because it shows that 
HZ molecules are diffusing quickly through the 
solution, which is crucial for the accurate and 
precise detection of HZ. It is crucial to keep in 
mind that a number of variables, including the 
size and shape of nanoparticles, the 
concentration and pH of the electrolyte 
solution, and the potential scan rate used in the 
cyclic voltammetry experiment, may have an 
impact on the electrocatalytic behaviour and 
electron transfer rate of PPy/Ag 
nanocomposites. To completely comprehend 
the electrocatalytic behavior of PPy/Ag 
nanocomposites and to improve their 
functionality for HZ detection, more research is 
required. 

8.2. Gold nanoparticles-CPs 

The distinctive physical and chemical attributes 
of gold nanoparticles (AuNPs) make them 
exceptional scaffolds incorporated in the CPs 
matrix to fabricate novel electrochemical 
sensors. Due to their small size, gold 
nanoparticles have a high surface-to-volume 
ratio. These nanoparticles greatly increase the 
surface area that is open to electrochemical 
reactions when they are added to the CPs/Au 
electrode. This greater surface area offers more 
catalytically active sites, increasing the 
electrode's overall sensitivity. Furthermore, 
gold nanoparticles have exceptional abilities for 
transferring electrons. The presence of free 
electrons on their surface gives them a high 
density of conduction electrons. During 
catalytic processes, these electrons enable 
effective electron transport between the  
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Figure 4. Representation of the preparation process to PANI/Au0 nanocomposites. DPV slopes of various 
hydrazine concentrations at (PANI/Au0)/GCE in pH 7.0 sol [107].   

 

electrode and the molecules of the analyte. The 
CPs/Au electrode thus experiences faster and 
more effective electron transport kinetics, 
increasing sensitivity [106]. Xin et al. (2014) 
have used gold nanoparticles/PANI-based 
nanocomposite for hydrazine detection. Gold 
nanoparticles were synthesized without any 
reductant and auto-formed during the 
adsorption process of PANI and AuCl-4, where 
PANI acts as both the reductant and supporting 
agent. CV was performed in PBS pH=7.0 and 
measured the catalytic activity of PANI/Au 
toward hydrazine oxidation resulting in a very 
sharp and enhanced peak compared to the 
PANI films. DPV curves for hydrazine 
concentration in PBS pH 7.0 at different rates 
showed a linear response at 0.01 mM to 6 mM, 
as illustrated in Figure 4. The lower detection 
limit was found to be 1 µM. The increase in 
sensitivity and selectivity of the PANI/Au 
electrode can be attributed to the better 
catalytic properties of gold nanoparticles [107]. 

Gutiérrez-Pineda et al. have prepared gold 
nanoparticle decorated polypyrrole 
(PPy)/stainless steel electrodes. PPy films were 
initially produced by electrochemical 
polymerization, leading to the deposition of 
gold nanoparticles. The voltametric 
investigation executed at 0.050 V.s−1 display 
that the HZ electrochemical oxidation occurs on 
Au/PPy/SS electrode at far lesser anodic over 
potentials than the bare electrode. The better 
electrochemical activity of the AuNPs/PPy 
electrode in parallel to a gold electrode specifies 
that AuNPs/PPy increases the electrode’s 
surface area and acts as a novel 
electrochemically active sensor for HZ [108]. 
Oukil et al. synthesized gold 
nanoparticle/polypyrrole deposited on the iron 
electrode. The electrode was tested for 
hydrazine sensing and showed an excellent 
response for HZ oxidation by cyclic 
voltammetry. The designed electrochemical 
sensor revealed a sensitivity of 0.05 μA/μM and 
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a detection limit of 6 × 10–3 mM towards 
hydrazine, disclosing the high catalytic 
properties of the electrode. The synergistic 
effect that results from combining AuNPs and 
CPs in a nanocomposite can increase the 
sensitivity and selectivity of electrochemical 
sensors. The CPs can function as a supporting 
matrix, providing stability, and improving the 
kinetics of electron transfer, while the AuNPs 
can act as nanoelectrode, offering a significant 
electroactive surface area for redox processes.  
Therefore the electrode surface made of CPs 
and gold nanoparticles makes it easier to detect 
hydrazine electrochemically. With the aid of 
CPs/Au as a catalyst, hydrazine molecules 
adhere to the electrode surface, undergo 
electrochemical oxidation, and then create a 
detectable current response. High stability, 
conductivity, and catalytic activity of the 
composite allow for sensitive and targeted 
measurement of hydrazine concentrations. 

8.3. Palladium nanoparticles-CPs 

Palladium nanoparticles (PdNPs) are an 
effective electrocatalytic material for 
electrochemical sensors due to their increased 
surface area over the bulk metal [109]. The 
electrochemical oxidation, adsorption, and 
subsequent detection of hydrazine are all made 
possible by the employment of Pd NPs and CPs 
on the electrode surface. Using both the special 
qualities of palladium nanoparticles and 
conducting polymers, the composite improves 
the sensitivity and selectivity of hydrazine 
sensing. Svetlozar et al. deposited palladium 
nanoparticles in polyaniline by layer technique. 
PdNPs–PANI nanocomposites were subjected to 
electrocatalytic sensing of hydrazine. The 
concentration-dependent voltametric currents 
were observed in the concentration range of 40-
800 µM HZ. The sensitivity increase was 
observed with the quantity of adsorbed Pd NPs. 
Furthermore, the amperometry result indicated 
a rectilinear response in the 10-300 µM range, 
and the sensitivity and detection limit was 
evaluated to be 0.5 µA/µmolcm−2 and 0.06 µM. 
The proposed methodology delivers the 
prospect of attaining a high ratio of electrically 
interactive metallic NPs within the CPs matrix 
to achieve better results [110]. Veniamin and 

companions (2013) dispersed palladium 
nanoparticles in conducting polymer poly-3, 4-
ethylene dioxythiophene (PEDOT) matrix. 
Electrocatalytic properties were studied by 
amperometry for hydrazine concentration. The 
sensors offered a detection limit (LOD) of 0.8 
µM and a linear range of 0.5-30-200-5,000 µM. 
The amperometric response shows the upsurge 
in the sensitivity of modified electrode towards 
hydrazine due to the large surface area of 
palladium nanoparticles [111]. Elena G. 
Tolstopjatova et al. prepared poly (3, 4-ethylene 
dioxythiophene) and poly (styrene sulfonate) 
(PEDOT-PSS). The PEDOT-PSS with Pd 
nanoparticles was drop cast on a glassy carbon 
electrode. Cyclic voltammetry and 
chronoamperometry were utilized as the 
primary tool to check the electrochemical 
properties of the metal-polymer composite, 
showing a response to hydrazine concentration 
from 0.4 to 100 μM. Different numbers of 
PEDOT: PSS/Pd layers were deposited on the 
electrode surface to evaluate their performance. 
The electrode with high Pd content shows 
higher sensitivity. The limit of detection, 
LOD=0.12 μM, and the maximum sensitivity of 
14 μA μM−1cm−2 were obtained towards the 
hydrazine. The rate of hydrazine detection 
increases with increasing palladium NPs 
loadings showing that electrocatalytic 
performance is controlled by Pd NPs [112]. 
Moreover, this class of electrodes exhibited 
significant stability. Pd/CP nanocomposite as 
electrode materials demonstrated successful 
electrocatalytic activity, indicating that they 
have potential applications in electrochemical 
sensing. 

8.4. Carbon nanomaterials/CPs binary 
nanocomposite 

Carbon-based materials show numerous 
benefits such as low manufacturing cost, 
immense surface area, chemical stability, and 
exceptional conductivity [113]. This 
nanocomposite-modified electrode surface has 
unique features that allow for the detection and 
measurement of hydrazine. Tzu-Yen et al. have 
prepared nanosheets of reduced graphene 
oxide (rGO) and poly (3, 4-ethylene 
dioxythiophene) nanotubes (PEDOT-NTs) 
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Figure 5. I–V chart of PANI/Gr composite film in HZ concentrations of 0.01 µM-0.01 M in 10 ml of 0.1 M PBS 
solution 115. 

Table 1. Literature comparison of various CPs Binary Composite Electrode for HZ sensing 

Method Modified electrode pH Linear range Detection References 
CV GCE/PEDOT/LS pH 7.0 15-290µM 9.8 μM [116] 
CV GCE/PPy/LS pH 7.0 2–75 μM 1.65 μM, [116] 
CV poly(4-viny1) 

pyridine(PVP)/Pd film 
electrode 

pH 4.6 0.2 mM to 1 
mM 

0.026 ng [117] 

CV 3D-PEDOT-CuxO pH 8.0 0.5 μM-53 
mM 

0.2 μM [53] 

CV/ 
Amperometry 

PSS-graphene pH  7.4 300 µmol L−1 1.0 
μmolL−1 

 

CV Au/PPy/GCE  5.0 × 10−7 M 0.1 μM [118] 
5.0 10−4 M 

9.3 × 10−3 M 

 

intended for electrochemical detection of 
hydrazine. Employing cyclic voltammetry, the 
electrochemical activity of a bare GCE 
electrodes modified with PEDOT NTs, rGO, and 
rGO/PEDOT NTs towards hydrazine oxidation 
were assessed. The rGO/PEDOT NTs 
nanocomposite compared to bare GCE, RGO, 
and PEDOT NTs showed a much higher 
oxidation current. The higher catalytic current 
indicates that the enhancement is accredited 
to the more excellent electrocatalytic activity 
and the higher surface area of rGO/PEDOT 
NTs. Thus, a sensitivity of 664.7mA mM-1.cm-2 
and a limit of detection (LOD) of 2.2 mM 
showed an excellent response toward 
hydrazine detection   [114]. Ameen et al. 
prepared a modified electrode based on 

polyaniline/graphene (PANI/Gr) composites. 
The response of PANI/Gr electrode current-
voltage (I–V) plots were recorded in the 
concentration range of 0.01 µM–0.1 mM, as 
shown in Figure 5. The sensitivity and 
detection limit of∼32.54×10−5 A cm-2.M−1, 
∼15.38 mM was noted with a correlation 
coefficient (R) of 0.78578 and a short response 
time (10 s). The electrochemical oxidation 
mechanism of hydrazine is given in the 
following reaction. 
N2H4 + (5/2) OH− → (1/2) N2 − + (1/2) NH3 

+ (5/2) H2O + 2e¯ 

It has been revealed that the PANI/Gr 
electrode has an excellent resolution, making it 
suitable to detect HZ in real samples [115].
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Hence, carbon nanomaterials/conducting 
polymer nanocomposites with a high affinity 
for HZ molecules are effective materials 
(Table 1). 

8.5. Metal oxide NPs-CPs  

Metal oxide nanoparticles also unveil 
fascinating features such as size controllability, 
great chemical strength, and easy fabrication 
with easiness of surface modification, 
capability to stimulate the electron-transfer 
rate, and electrocatalytic effect [119]. Recently, 
highly sensitive novel electroanalytical sensors 
made up of nanostructured metal oxides-CPs 
are economical with greater precision when 
tested to hydrazine molecules [120]. 

8.6. Zinc oxide NPs-CPs 

Zinc oxide nanoparticles are distinctive 
inorganic semiconductor metal oxide with a 
wide bandgap of 3.37 eV. It is now widely used 
in electrochemical applications due to its 
environmentally free nature and its odd 
electrochemical properties [121]. Faisal et al. 
have prepared a polythiophene-based ZnO 
nanocomposite for the electrochemical sensing 
of hydrazine. The electrocatalytic performance 
of the prepared electrode for hydrazine was 
compared with the bare glassy carbon 
electrode (GCE) and ZnO GCE using the cyclic 
voltammetry technique. In the presence of 0.1 
mM hydrazine concentration in PBS buffer 
solution, higher anodic and cathodic currents 
reveal the ZnO/PTH electrode’s sensitive 
nature compared to the other electrodes. The 
oxidation current of 2.5 µA was observed, 
which was two times more than the ZnO/GCE. 
Further amperometric studies revealed the 
electrode’s very sensitive nature by adding 
different concentrations (0.5 to 48 μM) of 
hydrazine after regular time intervals. The 
detection limit was found to be 0.207 μM with 
a sensitivity of 1.22 μAμM−1cm−2. The highly 
sensitive nature of the electrode is owed to the 
synergistic effect of the zinc oxide. 
Electrochemical sensor can respond more 
quickly because ofthe rapid electron transfer 
processes that are made possible by the 
combination of polythiophene and ZnO 
nanoparticles. Higher sensitivity is achieved by 

ZnO nanoparticles high surface-to-volume 
ratio, which creates a larger area for analyte 
interaction and improves electron transfer 
kinetics [122]. 

8.7. Iron III oxide NPs-CPs 

α-Fe2O3 possess good catalytic, low toxic, and 
eco-friendly properties, making them the 
material of choice for electrochemical sensors. 
Adel A. Ismail et al. developed the α-
Fe2O3/cross-linked polyaniline- based binary 
nanocomposite. The synthesized 
nanocomposite unfolds better electrochemical 
results in contrast with bare and α-Fe2O3. CVs 
were recorded in buffer 0.1 M PBS (pH 7.4) at 
a scan rate of 50 mVs-1 in the presence of bare 
GCE and α-Fe2O3/CPANI. No oxidation peak 
was observed for bare GCE, while a visible 
oxidation peak was observed for α-
Fe2O3/CPANI GCE. The exceptional sensitivity 
of 1.93μAμM−1cm−2, a very low limit of 
detection (LOD) of 0.153 μM at (S/N=3), and 
wide-ranging linear hydrazine concentrations 
from 0.2 μM to 40 μM was confirmed. The 
significant rise in peak current combined with 
a decrease in over potential indicates a higher 
charge transport reaction. As compared to the 
bare electrode, the results indicate that the 
nanocomposite material made of iron oxide 
nanoparticles embedded in a polyaniline 
matrix has superior electrochemical 
characteristics. The obvious oxidation peak 
seen in the CVs obtained with the 
nanocomposite GCE, which denotes a greater 
charge transport reaction, serves as its proof. 
In addition, the nanocomposite displays 
remarkable sensitivity, a low limit of detection, 
and a broad linear range of detection for 
hydrazine. These findings imply that 
nanocomposite material may function well as a 
hydrazine sensor. Thus, hydrazine could be 
sensed efficiently due to iron oxide 
nanoparticles in the polyaniline matrix [123]. 

8.8. SrTiO3 NPs-CPs 

In 2020, an approach was carried out for the 
fast and selective detection of hydrazine by M. 
Faisal et al. Polyaniline and mesoporous 
Strontium titanate (SrTiO3) nanocomposite 
was designed and modified on glassy carbon 
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Table 2. CPs-Metal oxide composite electrodes comparison for HZ sensing literature representations 

Method Modified Electrode pH Linear Range Detection limit References 

CV/amperometry ZnO/PTh 7.4 0.5-48 μM 0.207 μM [121] 

CV/amperometry α-Fe2O3/ PANI 7 0.2-40 μM 0.153 μM [123] 

LSV/amperometry PANI/SrTiO3 7.2 0.2-3.56 mM 1.09-0.95 μM [124] 

 

electrode (GCE). The electrochemical 
performance of the PANI/SrTiO3 was tested 
against the pure SrTiO3 and bare GCE. Cyclic 
voltametric response of 5% PANI/SrTiO3 was 
tested in 0.1 M PBS at 7.2 pH in the presence of 
1.0 mM of HZ, revealing a higher oxidation 
current than bare GCE pure SrTiO3. LSV 
studied showed the sluggish electron transfer 
kinetics for bare GCE and pure SrTiO3, while 
5% PANI/SrTiO3 disclosed the high affinity of 
the electron conduction with very low electron 
transfer resistance. The sensitivity of 0.2438 
µAµM-1cm-2 was achieved, while amperometric 
studies observed a linear detection limit of 
0.95 µM. The improved adsorption and 
diffusion of HZ molecules on the electrode 
surface owns the synergistic effect of organic 
and inorganic moieties, thus playing 
substantial roles in HZ sensing [124]. 
Therefore an electrode's surface can be altered 
using SrTiO3 nanoparticles to provide a 
nanostructured interface that aids in the 
electrochemical detection of hydrazine. The 
conducting polymer matrix can allow the 
nanoparticles to spread uniformly, resulting in 
the formation of a composite film on the 
electrode surface. This may give hydrazine 
molecules a wider surface area on which to 
interact with the conducting polymer, 
enhancing the electrochemical reaction (Table 
2). 

9. Ternary Nanocomposites of Conducting 
Polymers for Hydrazine Detection 

The idea of using ternary nanocomposite-
based electrochemical sensors for fast and 
ultra-sensitivity of hydrazine is thriving 
nowadays. The electrochemical sensing 
phenomenon of the ternary nanocomposite 
occurs due to the synergistic amongst the 

three constituents. Ternary nanocomposites 
can have better properties than binary 
nanocomposites, which is one of its 
advantages. A ternary nanocomposite, for 
instance, might have increased surface area, 
better electrical conductivity, or improved 
catalytic activity. The ability to customize 
ternary nanocomposites by changing the ratio 
and content of the three components is 
another benefit. 

The recently prepared CP-based ternary 
nanocomposite electrochemical sensors for 
hydrazine detection are discussed here. In a 
recent attempt, Saeb et al. (2021) prepared 
TiO2/PANI/Au ternary nanocomposite 
fabricated on the glassy carbon electrode 
surface. TiO2 is a wide-bandgap semiconductor 
that improves sensitivity by expanding the 
availability of potentially active sites for 
analyte adsorption. Au nanoparticles have 
catalytic activity, which increases the 
sensitivity overall and amplifies the sensing 
signal. TiO2 nanoparticles were deposited on 
the GCE surface, followed by the 
electrodeposition of aniline and gold 
nanoparticles. The electrochemical 
performance of ternary nanocomposite for 
hydrazine was assessed by differential pulse 
voltammetry. The results showed that linear 
response of hydrazine concentration vs. 
current was calculated to be 0.9 × 10-6 M to 1.2 
× 10-3 M and the detection limit to 0.5 μM. 
Other properties such as selectivity, response 
rate, and reproducibility were studied, and 
electrodes exhibited good performance. The 
excellent electrochemical behavior of the 
electrode towards HZ sensing is attributed to 
the presence of TiO2 and gold nanoparticles 
providing high surface area, high charge 
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transfer, and an excellent catalytic effect [125]. 
G. Kaladevi et al. (2020) prepared silver 
nanoparticle-modified polyaniline (PANI)/rGO 
nanocomposite. Reduced Graphene oxide and 
silver nanoparticles were reacted with the 
aniline monomer solution to form the ternary 
nanocomposites. rGo/AgNPs and PANI showed 
enhanced the peak current response to 
hydrazine oxidation compared to the bare 
electrode in 0.1 M PBS (pH=8.0). The diffusion 
coefficient was determined by 
chronoamperometry (6.25 × 10−5 cm2/s). The 
overall synergy of PANI AgNPs/rGO provides a 
better sensitivity of hydrazine at low 
concentrations [126]. Rahman et al. have 
prepared AgNPs-polyaniline tungsten 
phosphate-based nanocomposite. IV 
characteristics for hydrazine detection 
disclosed that the sensor possesses linear 
response, higher sensitivity of (~12.5 
μAcm−2mM−1), and a lower detection limit of 
(~2.8 nM). It offers more benefits such as 
constancy, non-hazardous nature, and decent 
electrochemical activity. The high sensitivity of 
the synthesized composite allows a fast 
electron transfer rate. Due to the increased 
surface area of the nanocomposite, it offers a 
favourable environment for hydrazine sensing 
[127]. Yuea et al. (2017) prepared a ternary 
composite for the hydrazine detection based 
on nitrogen-doped carbon nanopolyhedra 
(CNP), Prussian blue (PB), and conductive 
polymer polypyrrole. PB has outstanding 
stability and excellent electrochemical 
characteristics, such as high electrical 
conductivity. Due to its distinctive capacity for 
redox reactions, PB is an excellent choice for 
sensing applications. The electronic 
characteristics of the carbon lattice are 
changed by nitrogen doping, which adds more 
nitrogen atoms to the structure. Moreover, 
nitrogen increases the number of chemically 
active sites that can be used, enhancing the 
sensitivity and selectivity of CNP towards 
hydrazine molecules. The highly modified 
electrode demonstrated prompt reaction and 
sensitivity of 0.22 A.M-1, a dynamic linear 
range from 7.5×10-7 M to 1.7×103 M, and a 
detection limit of 2.9×10-7 M, along with 
significant selectivity and stability. The 
amperometric response of the sensor was 

tested by the successive addition of different 
hydrazine concentrations disclosing its 
capability for the hydrazine oxidation. The 
mechanism of hydrazine oxidation is given as 
follow: 

K2Fe2+[Fe2+CN)6] ↔  KFe3+[Fe2+(CN)6] + e- + K+  
(1) 

4K e3+ [Fe2+(CN)6] + N2H4 + 4K+ → 

4K2Fe2+[Fe2+(CN)6] + N2↑ + 4H      (2) 

Because of the high electrical conductivity of 
PPy and the amazing catalytic property given 
by the PB/CNP/PPy, the electrode modified 
with PB/CNP/PPy exhibits excellent electro 
activity towards hydrazine oxidation [128]. 
Afshari et al. prepared an electrochemical 
sensor by depositing AgNps on the fluorine-
doped tin oxide dispersed in a polyaniline 
matrix and fabricated on graphitic‑carbon 
nitride film. The use of nitrogen-based 
materials is due to their exceptional 
electrocatalytic properties. Electrochemical 
deposition of PANI/ graphitic‑carbon nitride 
(C3N4) film on FTO was achieved at a value of 
the current intensity of 5 mAcm−2 and different 
deposition intervals (400 s, 800 s, 1200 s, and 
2000 s). The electrochemically active surface 
area of the electrode expands by increasing the 
extent of AgNPs and further reveals that up to 
1200s, the electrode showed the efficient 
sensing of hydrazine. The PANI/g-C3N4/AgNPs 
electrode, in contrast to impure Ag and 
PANI/g-C3N4 electrodes, shows superior 
electrochemical detection of HZ. Furthermore, 
the PANI/ g-C3N4/AgNPs electrode 
demonstrated a wide linear concentration 
range of hydrazine (5 to 300 mM) with a 
detection limit of 300 Mm [129]. Balwinder 
Kaur et al. used nanocrystalline zeolite to 
advance the catalytic properties of the CP 
polymer matrix. The sensing property of 
copper nanoparticles decorate polyaniline 
zeolite (CuNPs/PANI-Nano-ZSM) glassy 
carbon electrode toward hydrazine was 
studied. The electrocatalytic property was 
measured using the DPV technique in 0.1M 
PBS (pH=8.5). Results show that hydrazine 
was oxidized, indicating a sharp oxidation 
peak of 595 mV. The oxidation currents 
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increase directly with the increase in HZ 
concentration, and the linear dynamic range 
was summed up to be 3nM to 900 μM. HZ was 
discovered to have a linear calibration in the 
region of 3 nM to 900 M. The results can be 
endorsed by the mutual impact delivered by 
widely distributed CuNPs, conductive PANI, 
and greater surface area nano zeolite. The easy 
electron movement was offered by the PANI 
matrix and nano zeolite [130]. Vellaichamy et 
al. synthesized ternary nanocomposite based 
on copper nanoparticles-polyaniline-graphene 
oxide (CuNPs-PANI-GO) by in situ 
polymerization. The GO surface was modified 
by polymer and copper nanoparticles. 
Intended for carcinogenic hydrazine detection, 
CV graphs were taken in the 0.1 phosphate 
buffer solution (PBS) of pH=7.0. The potential 
is applied from 0.0 to 1.1 V at the scan rate of 

50 mV.s−1, whereas increasing the HZ 
concentration from 10 to 90 µM, the 
magnitude of oxidation current increases. This 
is owed to hydrazine’s direct (anodic) electro-
oxidation on the CuNPs-PANI-GO electrode 
surface. To determine the sensitivity, linear 
range, and detection limit of CuNPs-PANI-GO 
modified electrode, amperometric studies 
were done, which are found to be 0.0045, 
0.015 µM, and 359.93 µA mM−1.cm−2, 
respectively, as demonstrated in Figure 6. It 
was revealed that the ternary nanocomposite 
of CuNPs-PANI-GO unveils improved electron 
transfer with the more extraordinary 
electrochemical performance due to the 
powerful synergistic effect that owns to the 
interactions among copper nanoparticles 
dispersed in the PANI matrix on GO [131].    

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (a) CuNPs-PANI-GO/GCE graph, (b) CuNPs-PANI-GO/GCE in 0.1 M sol in 50 µM HZ, and (c) 
CuNPs-PANI-GO/GCE graph at various scan rates. Oxidation current linear relationship with the square 
root of scan rate [131].   
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Figure 7. (a) the CV curves of the ZnCo2O4, PANI, and PANI-ZnCo2O4, (b) scan rate effect of PANI-
ZnCo2O4, and (c) the CV curves of bare ITO and PANI-ZnCo2O4 in 0.3 M NaOH.  

 
Nitrogen-doped-graphene poly vinyl 
pyrrolidone / gold nanoparticles (NG-
PVP/AuNPs) were prepared for hydrazine 
oxidation by Saengsookwaow et al. (2016).  
The use of nitrogen as a heteroatom provides 
various advantages and improves the electron 
transfer rate for electrochemical sensing. The 
CP matrix's electrocatalytic activity and 
selectivity towards particular analytes may be 
improved by nitrogen dopants. Graphene and 
gold nanoparticles can be stabilised and 
dispersed by the polymer 
polyvinylpyrrolidone (PVP), which enhances 
the stability and homogeneity of the 
composite. In addition, PVP can provide the 
composite a compatible surface, making it 
appropriate for sensing applications. The NG-
PVP nanocomposite was fabricated on the 
screen-printed electrode, and the 
morphological study was done by scanning 
electron microscopy. SWV was used to study 
the electrochemical behavior of hydrazine 
oxidation. Owing to the synergic influence of 
NG-PVP and AuNPs, the designed electrode 
showed enhancement in anodic peak ten folds 
in contrast to the bare screen-printed 
electrode (SPE). In ideal conditions, high 
sensitivity of 1.370 μA μM-1cm−2, a wide linear 
range of 2-300 μM, and a low detection limit of 
0.07 μM were acquired for hydrazine [132]. 
Omar et al. have prepared zinc cobaltite 
(ZnCo2O4) nanoparticles with a hydrothermal 
approach and dispersed them in a polyaniline 
matrix prepared by oxidative chemical 
polymerization. ZnCo2O4 is a semiconducting 
nature metal oxide with catalytic activity that 
aids in the oxidation of HZ. ZnCo2O4 
nanoparticles added to the PANI matrix can 

improve the sensing. The prepared ternary 
nanocomposite was loaded on the ITO to 
design a working electrode for hydrazine 
sensing. Cyclic voltammetry of bare ITO and 
PANI-ZnCo2O4 were recorded. The bare ITO 
showed sluggish and irreversible electron 
transfer. At the same time, PANI-ZnCo2O4 
displayed a high anodic current peak due to 
zinc cobaltite nanoparticles which provide 
high conductivities, as demonstrated in Figure 
7. PANI-ZnCo2O4 nanocomposite was further 
employed for N2H4 sensor application 
compared to bare ITO containing 0.3 M NaOH 
solution with N2H4 concentration changing 
from 0 to 4 mM at a scan rate of 20 mV/s 
disclosed in Figure 8. The PANI-ZnCo2O4 
showed a high anodic peak current, while bare 
ITO showed no significant peak showing its 
slow and sluggish nature. Furthermore, 
amperometric studies revealed the detection 
limit for HZ to be 0.2 µM and a linear range of 
0.6 mM to 1.05 Mm. The high sensitivity of 
PANI-ZnCo2O4 nanocomposite is owed to the 
collective electrocatalytic effect with different 
redox behaviors of both PANI and ZnCo2O4 

[133]. 
Yang et al. have prepared the ternary 
nanocomposite of Iron 
oxide/polypyrrole/graphene oxide 
(Fe3O4/PPy/GO) for the HZ detection. Due to 
its unique properties, Fe3O4 is the appropriate 
magnetic iron oxide for sensing applications. 
Because it has many functional groups and a 
wide surface area, graphene oxide (GO) is 
useful because it raises the sensitivity of the 
composite by offering plenty of sites for 
analyte adsorption. Additionally, the electrical 
conductivity of GO is strong, enabling quick 
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Figure 8. (a) PANI-ZnCo2O4 CV display in 0.3 M NaOH with N2H4 concentration altering from 0 to 
4 mM at a scan rate of 20 mV/s and (b) linear relationship between the anodic peak currents 
versus N2H4 concentrations [133]. 

 

Table 3. Literature comparison of various CPs ternary composite electrode for HZ sensing 

Method Electrode Linear Range Detection 

Limit 

References 

CV TiO2/PANI/Au 0.9 × 10-6 M to 

1.2× 10-3 M 

0.5 μM 125 

CV PANI AgNPs/rGO 0.4 to 2.2 μM 70 nM [126] 

IV AgNPs/PANI/tungsten phosphate 0.0010-0.50 

mM 

2.8 nM [127] 

CV PB/CNP/PPy 5×10-7 M 

1.7×10-3 M 

2.9×10-7 M [128] 

Amperometry PANI/gC3N4/AgNPs 5-300 mM 300 μM [129] 

CV CuNPs/PANI-Nano-ZSM 4 nM-800 μM 1 nM [130] 

Amperometry CuNPs-PANI-GO 40 to 480 nM 0.0045 μM [131] 

CV NG)- polyvinylpyrrolidone(PVP)/ 

(AuNPs) (SPCE) 

2-300 μM 0.07 μM [132] 

CV PANI-ZnCo2O4 0.1-0.6 mM 0.2 μM [133] 

CV/ 

Amperometry 

Fe3O4/PPy/GO 5.0 μM to 1.3 

mM 

1.4 μM [134] 

Amperometry SAuNPEs/PB/PPy 0.5-80 μM 0.18 μM [135] 
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electron transfer during the sensing 
process.Fe3O4/PPy/GO electrochemical activity 
was checked compared to bare GCE by CV in 
PBS sol of 7.0 PH. The CV results revealed that 
Fe3O4/PPy/GO showed a higher oxidation 
current while bare GCE and GO/GCE showed no 
significant oxidation current in 0.5 mM HZ. The 
amperometric response showed the current vs. 
time graph, revealing that the oxidation peak 
increases by consecutive addition of HZ. The 
linear detection ranges of 5.0 μM to 1.275 mM 
were found. The detection limit for HZ was 1.4 
μM. The improved electrocatalytic activity of 
Fe3O4/PPy/GO was attributed to the combined 
influence of nanoparticles and polypyrrole 
possessing higher surface area, good 
electrocatalytic properties, and high 
conductivities [134]. Comparison of various 
ternary composite results for HZ sensing are 
given in Table 3. 

10. Perspective Outcome & Conclusion 

The research and development of 
electrochemical sensing systems can be 
advanced through the introduction of 
nanomaterials into conducting polymers. These 
sensors can detect toxic hydrazine quickly, 
selectively, and sensitively by taking advantage 
of the superior characteristics of nanoscale 
materials, such as improved electrode kinetics, 
active electron transfer, and improved catalytic 
activity. This opens the door for improved 
safety and monitoring capabilities across a 
variety of fields. A conducting polymer 
nanocomposite for hydrazine sensing should 
take into account a number of crucial variables, 
including, sensing mechanism, sensitivity and 
selectivity. Conducting polymers and 
nanocomposite components should be selected 
based on their tendency to interact with 
hydrazine and to experience quantifiable 
changes in their electrical properties when 
exposed to hydrazine. To provide precise and 
dependable sensing performance, the sensing 
mechanism should be thoroughly understood. 
One of the most important factors is how 
sensitive the conducting polymer 
nanocomposite is to hydrazine. In the 
hydrazine presence at low concentrations, the 
nanocomposite should show a considerable 
change in its electrical properties, enabling 

precise and reliable detection. To prevent false 
positives or false negatives, the conducting 
polymer nanocomposite selectivity towards 
hydrazine is crucial. In spite of other potentially 
interfering species that are frequently present 
in the sample matrix, the nanocomposite ought 
to be able to detect hydrazine with high 
specificity.  
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AuNPs: Gold nanoparticles 

PdNPs: Palladium Nanoparticles 

ZnO: Zinc Oxide 

SS: Stainless steel 

SrTiO3: Strontium titanate 

C3N4: Graphitic‑carbon nitride 

FTO: Fluorine Tin oxide 

ZnCo2O4: Zinc cobaltite 

Fe3O4: Iron Oxide 

NaOH: Sodium hydroxide 

CuNPs: Copper Nanoparticles 

nM: Nano molar 

PKa: Acid dissociation constant 

LBL: Layer by layer 

AgNPs: Silver Nanoparticles 
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NTs: Nanotubes 

SPE: Screen Printed Electrode 

1D: One Dimension 

2D: Two Dimension 

WE: Working Electrode 

EIS: Electrochemical Impedance Spectroscopy 

SWV: Square Wave Voltammetry 

µA: Micro Ampere 
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