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A B S T R A C T 

Recently, synthetic scientists have become interested in potassium alum 
(KAl(SO4)2.12H2O), also referred to as "alum," as an effective, safe, and 
environmentally friendly acid catalyst for carrying out various organic 
transformations. The current mini-review piece provides an overview of 
the representative catalytic uses of this easily accessible and inexpensive 
inorganic sulphate salt in organic reactions that have been reported from 
mid-2017 to the present. 
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1. Introduction 

otassium alum (KAl(SO4)2.12H2O), one 
of the many types of commercially 
accessible alums, is widely used for 
both domestic and medical purposes 
[1-3]. Potassium alum, more 

commonly known as "alum," is used in 
everyday living as an inexpensive, non-toxic 
water purifier, and antiseptic agent (Figure 1). 

 

Figure 1. Potash Alum in crystalline form 

As E number E522, potassium alum is 
frequently used in baking flour, leather tanning, 
dyeing, and water purification. In addition, it 
can be used cosmetically as a deodorant, an 
aftershave, and a styptic for small shaving-
related bleeding. Potassium alum has been used 
to stop bleeding in instances of hemorrhagic 
cystitis because it has antibacterial and 
antiperspirant properties [4, 5]. Since the 
1920s, hydrated potassium aluminium sulphate 
has been the main adjuvant used to boost the 
effectiveness of immunizations. It is frequently 
found as KAl(SO4)2.12H2O, a dodecahydrate. 
With a space group of P a 3 and a lattice value of 
12.18, it crystallizes in an octahedral structure 
in a neutral solution and a cubic structure in an 
alkali solution. The substance, which is 
frequently referred to as just "alum", is the 
most significant member of the general family 
of substances known as alums. 

The literature review shows that it is an 
effective acid catalyst for carrying out a wide 
range of organic transformations [6-17]. Alum 
has recently captured the interest of synthetic 
chemists who are investigating its use in 
organic transformations because of its innate 
catalytic proficiency, low cost, non-toxicity, and 
environmental friendliness. Up until the middle 
of 2017, Bramhachari et al. provided a 
comprehensive report on potash alum [18]. 

Keeping in view of continued process in 
updating emerging areas in catalysis and 
organic synthesis [19-26], herewith, we have 
discussed the most representative instances of 
alum-catalyzed organic transformations from 
the middle of 2017 to the present in this mini 
overview. 

2. Applications of Alum as Catalyst in 
Organic Transformations 

2.1. Heterocyclic ring formations 

Heterocycles of nitrogen and oxygen have 
numerous uses in biology and medicine. Several 
bioactive natural compounds contain the 
pyrrole-2-one moiety [27]. Another such 
molecule found in nature is furan-2(5H)-one 
(butenolide). This core fragment also exhibits a 
wide range of biological actions [28]. 

To create polysubstituted pyrrol-2-ones and 
furan-2-ones (4 and 5), Singh et al. [29] 
reported a practical, one-pot, and 
multicomponent condensation of various 
aldehydes (3) and amines (2) with dialkyl 
acetylenedicarboxylates (1) (Figure 2). 

One of the key advantages of this technique is 
the utilization of potash alum as a solid catalyst 
that is affordable, recyclable, and 
environmentally friendly. Low-cost reagents, 
benign reaction conditions, convenience of 
operation, fast reaction durations, no 
requirement for chromatographic purification, 
and excellent yields are further aspects of 
disclosed methodology. The necessary pyrrol-2-
one derivatives (4) were regularly synthesized 
with excellent yields (Scheme 1).  

These findings showed that electron-
withdrawing benzaldehydes interacted with 
aniline more favourably than electron-donating 
benzaldehydes. Using one equal of each amine, 
DEAD, and aldehyde, the authors expanded it to 
the preparation of furan-2(5H)-ones (5) in good 
to excellent yields (Scheme 2). The synthesis of 
pyrrol-2-ones and furan-2-ones was suggested 
using possible methods (Schemes 3 and 4, 
respectively). When producing pyrrole-2-one, 
the first amine molecule 2 (1 mmol) was 
combined with dialkyl acetylenedicarboxylate 1 
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Figure 2. Preparation of pyrrol-2-ones and furan-2-ones 
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Scheme 1. Substrate scope in the synthesis of pyrrol-2-ones [selected examples] 
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Scheme 2. Preparation of furan-2-ones [selected examples] 
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(DEAD, 1 equiv.) in the presence of potash alum 
(20 mol%) to produce intermediate I (TLC 
control), to which a second amine molecule 2 (1 
mmol) was then added.  

Now, instead of combining with the 
intermediate I, the second molecule decided to 
do so with the aldehyde (3), resulting in the 
synthesis of Schiff base (Intermediate II). The 
target pyrrole-2-one (4) was created as a 
consequence of the tautomerization of 

intermediate III and subsequent intramolecular 
cyclization, as depicted in Scheme 3, and then 
the intermediate I and intermediate II came 
together to create the intermediate III. 

But when the purpose of the synthesis was to 
create furan-2-one (5), the process needed to 
start with the addition of amine 2 and DEAD 1, 
then the aldehyde (3), as illustrated in Scheme 
4. 

 

Scheme 3. Plausible mechanism for the synthesis of pyrrol-2-ones 

 

Scheme 4. Proposed mechanism for the synthesis of furan-2-ones 
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Scheme 5. Preparation of spiro quinoxaline-pyrimidone based derivatives 

 

Antimalarial, antiviral, anti-inflammatory, anti-
oxidant, antidiabetic, antipsychotic, 
antimicrobial, and anticancer actionare all 
displayed by the pyrimididone moiety [30]. The 
quinoline molecule is a bioisostere of 
benzothiophene, benzimidazole, naphthalene, 
and quinoline. Numerous biological actions, 
including bactericidal, fungal, antitubercular, 
antimalarial, antioxidant, anti-inflammatory, 
and anticancer activity, are demonstrated by 
the quinoxaline nucleus [31]. Both of spiro 
rings surrounding the common atom in spiro 
compounds are perpendicular to one another, 
which may enhance their affinity for DNA and 
potentially boost their anticancer properties. 
Bhatt et al. [32] attempted to combine the 
quinoxaline and pyrimidone moiety in the spiro 
form and created spiro quinoxaline-pyrimidone 
based derivatives (8) using green catalyst 
potash alum (Scheme 5). 

Due to its astoundingly diverse range of 
pharmaceutical characteristics, quinazoline has 
taken a special place in heterocycles containing 

nitrogen. Such a broad spectrum of quinazoline 
highly necessitates potential derivatization to 
explore additional pharmaceutical 
opportunities [33]. To prepare 2,3-
dihydroquinazoline-4(1H)-ones (10) from 
equimolar 2-aminobenzamide (9) and 
substituted aromatic aldehydes (3) in the 
presence of 10% aqueous potash alum, Chavan 
and et al. [34] described an environmentally 
benign process using H2O as green solvent 
(Scheme 6). The advantages of the current 
methodology include a good to outstanding 
product yield, a straightforward working 
method, and simple purification. 

It was found that the type of substitute that is 
present on aromatic aldehydes affects the 
reaction's output. By taking into account the 
final yield, as depicted in Scheme 6, this 
correlation was highlighted. Product output is 
increased by electron-donating functionality 
while it is decreased by electron-withdrawing 
functionality. 

 

 

Scheme 6. Synthesis of 2,3-dihydroquinazoline-4(1H)-ones 
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Scheme 7. Preparation of 2-oxo(thio)-1,2,3,4-tetrahydropyrimidines 

2-Oxo(thio)-1,2,3,4-tetrahydropyrimidines [35] 
and N-aryl-3-aminodihydropyrrol-2-one-4-
carboxylates [36] due to their beneficial 
biological and pharmaceutical properties, are 
two types of the most significant heterocyclic 
compounds.  

Mohamadpour [37] developed a one-pot, multi-
component method for producing 
physiologically active 2-oxo(thio)-1,2,3,4-
tetrahydropyrimidines (13) and N-aryl-3-
aminodihydropyrrol-2-one-4-carboxylates (14) 
(Scheme 7). Some major benefits of the 
synthetic process included gentle reaction 
conditions, an inexpensive, affordable, non-
toxic mineral catalyst, one-pot manufacture, 
environmental friendliness, and a decent to 
high yield of biologically active compounds. The 
compound synthesized during this procedure 
was easily crystallized, filtered, and purified. 

Using potassium alum (20 mol%), aldehyde 
derivatives (3), urea or thiourea (11), and 
ethyl/methyl acetoacetate (12) under optimal 
conditions, the scope of this reaction was 
investigated. Numerous compounds containing 
derivatives of electron-donating and electron-
withdrawing aldehydes, including substituted 
benzaldehydes with Cl, NO2, OH, and OMe were 
synthesized by the author. 

The authors then concentrated on the 
preparation of N-aryl-3-aminodihydropyrrol-2-
one-4-carboxylates utilizing a one-pot four-
component domino reaction via amines (2 
equiv.) and dialkyl acetylenedicarboxylate (1.0 
mmol). Excellent yields were achieved by these 
reactions, and Scheme 8 shows the outcomes. 
In Schemes 9 and 10, the proposed strategies 
for producing target compounds (13 and 14) 
are depicted. 

 

Scheme 8. Preparation of N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates 

Scheme 9. Plausible mechanism route for the preparation of 13 
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Scheme 10. Plausible mechanism for the preparation of 14 

Pyrazoles have a wide variety of biological 
activities and are useful synthons and building 
blocks for many heterocyclic products. They 
can also serve as a binucleophile. Herbicides, 
pesticides, and medications like lonazolac, 
fipronil, Viagra, celecoxib, and many others 
have all been made using pyrazole nucleus [38]. 
Devkate et al. reported a one-pot and alum-
catalyzed method for producing N-phenyl 
pyrazoles (16) by cyclocondensing 1,3-
dicarbonyl (12) with phenyl hydrazines (15) in 
water at ambient temperature (Scheme 11) 
[39]. The products produced with a 
straightforward work-up process in good to 
outstanding yields. 

2.2. C-C and C-H functionalization 

One of the effective methods for creating 
carbon-carbon bonds is the Mannich reaction, 

which is used to synthesise β-amino carbonyl 
molecules [40]. The β-amino carbonyl 
derivatives are widely used as crucial synthetic 
intermediates in the production of 
pharmaceuticals, drugs, and other biologically 
active substances. 

Patra and Behera [41] have created alum doped 
nanopolyaniline (NDPANI), an effective and 
reusable green catalyst for the synthesis of β-
amino carbonyl compounds (18). The desired 
β-amino carbonyl compounds were produced 
with good yield using a Mannich type reaction 
of different amines (2), aldehydes (3), and 
ketones (17) in a solvent-free environment. 
This catalyst's benefits include low cost, 
reusability, ease of work-up, and stability.  

 

 

Scheme 11. Synthesis of substituted N-phenyl pyrazoles 
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Scheme 12. NDPANI catalyzed synthesis of β-Amino carbonyl compounds 

The scope of the reaction was broadened to 
include a number of aldehydes, amines, and 
ketones derivatives using this improved 
protocol (Scheme 12). It was very interesting 
that increasing the yield by adding an electron-
donating group to the benzaldehyde moiety's 
para location (18c). Similarly, adding an 
electron-withdrawing group to the 
benzaldehyde's para position reduced output 
(18b). Furthermore, when cyclohexanone was 
used as one of the precursors, a superb degree 
of diastereoselectivity was seen. To the authors' 
pleasure, 18f and 18g (syn/anti = 99:1 and 98:2, 
respectively) are the predominant produced 
syn isomers. When compared to an amine with 
an electron withdrawing group, 2-methyl 

aniline, which has an electron donating group, 
produces a less equivalent product. This table 
shows that a large yield (95%, 18c) of -amino 
carbonyl compounds could be produced at 
room temperature. Although a higher 
temperature might speed up the reaction and 
cut down on the reaction time, the aldamine's 
volatility makes side reactions more likely. This 
procedure used a small excess of ketones along 
with stoichiometric amounts of aldehydes and 
amines. Moreover, this procedure did not use 
any solvent.  

By reacting benzaldehyde (3), acetone (17), 
and aniline (2) for 7 hours at 30 °C with 3 mol% 
of the NDPANI catalyst, the catalyst's 
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Scheme 13. Plausible mechanism of Mannich reaction 

reusability was examined. The findings showed 
that the current catalyst could be used after five 
rounds without losing its catalytic activity. In 
Scheme 13, a reasonable mechanism was 
suggested and displayed. In addition to act as 
an activator to create an electrophilic centre 
and aiding the nucleophilic attack of the free 
amine to create an aldimine, the aluminium 
centre of NDPANI coordinates to the carbonyl 
group of aldehyde, and then the aldimine and 
enol forms of the ketone combine to produce an 
amino carbonyl molecule (18). 

α-Pinene (19), which is obtained from pine 
trees by creating cuts in the wood's trunk 
openings, is the primary component of 
turpentine, an essential oil made from pine gum 
(a procedure similar to that used to obtain latex 
from Hevea brasiliensis for rubber). Turpentine 
is a valuable and renewable natural resource 
that is frequently used in food, flavor, scent, and 
cosmetics production as well as in the synthesis 
of chemical intermediates. These procedures, 
which also include hydration, pinene oxide 
isomerization, epoxidation, esterification, and 
etherification, among others, can be used to 
produce a range of products with additional 
value [42]. 

Methoxylation is an important technical 
procedure used in the creation of diverse 
functionalized α-pinene derivatives. The 

methoxylation of α-pinene using potassium 
alum as a catalyst was the subject of the study 
by Wijayati et al. [43]. The optimal conditions of 
1 g of catalyst loading, a volume ratio of 1:10, a 
reaction temperature of 65 ℃, and incubation 
times of 6 h led to the greatest selectivity of 
potash alum in the methoxylation of α-pinene. 

The values for methoxylated products from the 
98.2% conversion of α-pinene were determined 
by GC-MS to be 59.6%, 8.9%, and 7.1% for α-
terpinyl methyl ether (20, TME), fenchyl methyl 
ether (21, FME), and bornyl methyl ether (22, 
BME), respectively. It became clear that the 
methoxylation reaction was more cost-effective 
with smaller alum loading (0.5-1.5 g).  

The reaction process for the methoxylation of 
α-pinene using potassium alum as a catalyst is 
shown in Scheme 14. According to a literature 
study, potassium alum produces acid through 
two different pathways, A and B, obtained by 
the terpinyl and bornyl ions, respectively. The 
protonation of the α-pinene double bond to 
form the pinyl ion started the alkoxylation 
process. Due to the bicyclic and monocyclic 
types of product rearrangement, this reaction 
was carried out along two parallel paths. The 
chemical mixture's bornyl and terpinyl ions, 
and then interact with the methanol to produce 
the ethers TME, BME, and FME through 
deprotonation. 
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Scheme 14. Proposed route for α-pinene methoxylation 

A helpful and simple method for protecting 
amino and hydroxyl groups in multistep 
organic transformations is acylation. When it 
comes to functional groups in chemistry, the 
ester and amide moieties stand out because 
they are essential to life and present in a wide 
variety of medicinal and synthetic structures. In 
the absence of an acid or base catalyst, AcCl or 
Ac2O are typically exploited as acylating agents. 
However, its use is constrained by both the 
chemicals' corrosive and lacrimatory 
properties. According to reports, acetic acid can 
be used in place of other regulators to acylate 
alcohol [44]. Acetic acid is economically and 
environmentally preferable to acetic anhydride 
or acetyl chloride because it adheres to the 
atom economy and minimizes waste, both of 
which are highly desirable in industrial 
applications. 

The unique physical and chemical 
characteristics of polyaniline, such as its 
affordability, ease of synthesis, and 
environmental stability, have attracted a lot of 
interest in the last few years. In a solvent-free 
environment, Patra and Behera [45] reported 
acylation of alcohols and amines (23) using 
acetic acid (24) as an acylating substance and 
alum doped nanopolyaniline (NDPANI) as a 
catalyst.  

In addition, potassium alum rather than 
corrosive acids was used to dope polyanilines. 
The reaction conditions are an improvement 
over the conventional methods because they do 
not require any expensive catalysts or solvents 
and drastically cut down on reaction time. This 
catalyst's benefits include being non-hazardous, 
affordable, recyclable, and simple to prepare 
and handle. A range of alcohols are included in 
the acylation application. The corresponding 
ester (25) can be produced in good to 
outstanding yields (86-95%) by substituting 
benzyl alcohols with either electron 
withdrawing or electron donating groups. 

It should be emphasized that by simply 
removing the catalyst through filtration and 
solvent evaporation, the products can be 
directly separated with excellent purity. After 
successfully acylating alcohol, writers 
concentrated on diverse amine, phenol, and 
cyclohexanol functionalities in a solvent-free 
environment. Scheme 15 provides a summary 
of the findings. It is surprising to observe that 
acylation of phenol occurs more slowly than 
acylation of amine. It was found that the 
acylation of secondary amine was slower and 
took longer than that of primary aromatic 
amine and aniline among the various amines 
investigated. Compared with aromatic amines 
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Entry Substrate (R) Product 25 Time(h) Yield(%) 
1 

  

25a 3 94 

2 

  

25b 2 95 

3 

  

25c 3 91 

4 

  

25d 8 86 

5 

  

25e 7 89 

6 

  

25f 5 90 

7 
  

25g 4 77 

8 

  

25h 2 92 

Scheme 15. Acylation of alcohols/amines with AcOH catalyzed by NDPANI [selected examples] 

 

Scheme 16. Proposed route of acylation of alcohols and amines catalyzed by NDPANI 
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Scheme 17. Proposed route for catalytic conversion of glucose into HMF & LA 

with electron-giving groups (p-bromoaniline), 
those with electron-withdrawing groups (p-
nitroaniline) showed slower reactions. 

The solvent-free acylation of alcohols and 
amines (23) with acetic acid (24) in the 
presence of an alum-doped nanopolyaniline 
(NDPANI) catalyst is represented in Scheme 16 
as a possible process. According to theory, 
when aluminium from NDPANI interacts with 
the oxygen in the carbonyl group, the carbon 
atom becomes more sensitive to nucleophilic 
attack from oxygen, nitrogen from alcohol, and 

amines, respectively. The ester and amide bond 
is eventually stabilized by dehydration (25). 

Recent socio-economic changes around the 
globe have been significantly influenced by the 
impending energy crisis caused by the rapid 
depletion of conventional fossil fuel resources. 
Excessive use of conventional fuels has 
increased greenhouse gas and toxic gas 
emissions, posing a permanent risk to both 
human health and the ecosystem. So far, efforts 
have been focused on developing renewable 
sources as alternatives to traditional fossil 
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fuels. Biomass has emerged as a potential bio-
renewable resource in this respect, able to 
produce fuel and value-added chemicals in a 
closed carbon loop, eradicating the issue of 
greenhouse gases [46].  

The research groups of Saha and Pant [47] 
examined potash alum (PA) as an effective and 
environmentally friendly catalyst for the 
synthesis of high value platform chemicals such 
as 5-hydroxymethylfurfural (HMF) furfural S 
from bio-renewable feedstocks in a biphasic 
reaction medium in this work. The maximum 
fructose and glucose dehydration outputs of 
64% and 49% HMF, respectively, were attained 
after 6 h of reaction time at 140 ℃. Similarly, a 
6 hour interval at 190 ℃ produced a 55% yield 
of furfural from xylose. This was the first study 
to highlight a method for using potash alum, 
which is safe and inexpensive, as a catalyst to 
turn glucose (26), fructose (27), and xylose 
(28) into their corresponding furans (29) 
(Scheme 17). 

By cyclic or acyclic routes, glucose and fructose 
are initially dehydrated into HMF (29). In total, 
there are two stages involved in the direct 
conversion of glucose into HMF: Isomerizing 
glucose (glucopyranose) into fructose 
(fructofuranose), and dehydrating 
fructofuranose (losing 3 mol of water) to HMF. 
While Bronsted acidity aids in the dehydration 
of isomerized intermediates to HMF, followed 
by HMF rehydration into LA (30) and FA (31), 
Lewis acidity of PA is responsible for the longer 
reaction period isomerization of glucose to 
fructose. 

3. Conclusion and Future Perspective 

The current review provides the most recent 
information on the catalytic uses of potassium 
alum (KAl(SO4)2.12H2O), also known as "alum," 
a cheap, non-toxic and environmentally benign 
catalyst in organic transformations involving 
heterocyclic ring formations and carbon-
carbon/carbon heteroatom bonds. These 
experimental findings are in favour of 
additional investigation into the safeness and 
affordability of the catalytic capabilities to 
create more environmentally friendly and long-
lasting protocols for compounds of potential 

interest. This information was reported from 
mid-2017 to the present and the upcoming 
researchers can create efficient methodologies 
for the development of biologically relevant 
heterocycles and catalysis. We sincerely expect 
that this article will encourage further progress 
in this direction. 
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