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A B S T R A C T 

Pesticides are helping to meet up the demand for population growth in today's 
agriculture. They are also being utilized for numerous issues including domestic pests 
control, home gardening, and disease vectors. Though, they are extremely poisonous 
in nature. They also cast false impact on surroundings. When used for the agricultural 
purpose, their toxic residues are continually left behind, and thus forming a major 
origin of pollution. The unwanted risky chemical groups are contaminating natural 
assets at a shocking rate. Agricultural pesticides left behinds are among the most 
harmful contaminants to the soil and water. Removing them from wastewaters is 
critical as they have bioaccumulation potential, toxicity, and a high persistence. 
Pesticides have long been used to improve manufacturing efficiency and extend the 
shelf-life of food goods. Their residues should be removed from food products and 
waters to limit human pesticide exposure. To remove pesticides, various processes 
are usually employed which include the adsorption process, membrane processes, and 
improved oxidation reactions, while microorganisms degrade them naturally i.e. 
bioremediation/biodegradation. Many organic and inorganic materials have been 
fabricated for rapid and complete degradation of pesticides. Semiconductor materials 
contribute to the pesticide oxidation and reduction because they have a proclivity for 
producing radicals through the charge separation. This review focuses on the 
pesticides’ taxonomy, functioning, their associated risks to human and environment, 
and degradation methods involving the current discoveries and progress in the 
utilization of several approaches for their probable removal from wastewater. The 
advanced oxidation, adsorption, bioremediation, photocatalysis, semiconductor 
materials, phytoremediation, and membrane technologies are some of these processes 
discussed in this investigation. In the upcoming researches, it will be required to 
generate the novel concepts in the current farming that will reduce the need of toxic 
pesticides and enable manufacturing of selective to target and less persistent 
pesticides. 
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1. Introduction 

 chemical substance in any state that 
adds into atmosphere and causes its 
excellence to lower to such a point 
that atmosphere may not function 
properly is called as pollutant [1-2]. 

The environmental pollution is caused by 
pollutants produced from nature, and then alter 
by human actions both directly/indirectly [3]. 
Human activities that include the constant use 
of chemicals that are not suitable to 
environment causes pollution of environment 
components thus causes the environmental 
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deterioration, and hence poses the potential 
risk to the living things [4]. Air pollution is 
mainly caused by fossil fuel burning, industrial 
productions, volatile gases leaking from interior 
decorations, and vehicle traffic [5]. These gases 
are poisonous and acidic in nature and causes 
the ecosystem damage [6]. They affect human 
health and climate [7]. Also they cause 
respiratory and cardiovascular diseases, 
corrosion of construction material, and poles 
melting. Water pollution is often caused by the 
industrial effluents, fertilizers, and pesticides 
applied to the agricultural lands or from sewage 
[8]. These all leads to fresh water scarcity, plant 
eutrophication, aquatic system pollution, and 
hazards to human health [9]. In soil, the excess 
of toxic substances changes the soil health, and 
thus effects crop, sinks [10], and mammalian 
health [11]. Soil pollution is usually caused by 
the industrial waste, agrochemicals, and heavy 
metals [12].  

Agrochemicals include pesticides. These 
pesticides are widely used in agriculture. 
Around 80% to 90% of agrochemicals that are 
practical to crops strike the unintentional 
targets and can also move from the treated 
region to any other sites and sully environment. 
Farmers often lack technical handling of 
pesticides and their safety aspects. However, 
they have only the conventional understanding 
of pesticides [13]. Rapid urbanization and 
overpopulation leads to increase food 
production. Therefore, pesticides intake has 
increased [14]. 

Pesticide residues cause’s harmful effects to 
human health such as birth defects, infertility, 
damages in central nervous system and 
immune systems, disorders of endocrine, gene 
mutations, and include causes of cancer [15-
17]. Conversely, certain pests controlled by 
pesticides change their status, become resistant 
or resurgent. Soil, a significant common asset 
supporting the endurance and improvement of 
individuals, is an essential asset for vegetation 
on earth. Soil is the greatest sink to the natural 
contaminations [18]. Also, farmland soil is a 
vital piece of horticultural biological system. 
Subsequently, the harvests nature and food 

handling is firmly connected with nature of soil 
that is consequently identified with human 
well-being [19]. Soils are the most fundamental 
piece in biological systems, might be sullied by 
organic and inorganic contaminations including 
pesticide [20]. The conventional farming is the 
main issue that causes environmental pollution 
because it involves the use of fertilizers, 
herbicides, and pesticides to produce various 
products or to protect plants. However, the 
inaccurate dosage and inefficient application 
causes mistake in agrochemical usage [21]. The 
excessive usage of nitrogen containing 
fertilizers causes increase in the amount of pest 
and disease (due to the imbalance of nutrients) 
[22]. Due to fertilizers and domestic waste 
disposal directly to the plants causes increase 
in amount of phosphor in soil and ground water 
which act as a major barrier of nutrients. A 
small amount of phosphate and nitrogen will 
help sustain life of water plants such as algae. 
Soil pollution causes the ground water pollution 
as both are in inseparable area. Polluting 
substances from soil get dissolved into 
groundwater. Pesticide residue can become a 
part of food chain and causes harmful effects to 
the living organisms that consume them. 
Contamination can also occur due to the 
hazardous material that moves through the 
flow of water, spread by wind or through 
organisms being exposed to the agrochemicals 
[22]. 

Water is the main source of life on earth, and it 
is highly contaminated with pesticide and 
industrial pollutants [23]. Water is abundant, 
but its abundance is limited by certain factors: 
(i) 97% of total water is sea water also 2/3 of 
3% remaining is immobilized, (ii) water is not 
equally distributed and land is also unequally 
populated, and (iii) water got polluted due to 
human activities and causes pollution in water 
bodies when discharged [24]. Therefore, 
solution of water scarcity is a major concern. 
Therefore, water treatment is highly needed to 
diminish the hazards on human health and 
environment. Figure 1 displays the pesticides 
consumption worldwide in the last nine years 
[25]. 
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Figure 1. Worldwide utilization of pesticides in the last 9 years 

2. Pesticides Taxonomy 

The pesticides taxonomy is according to 
chemical nature, target organism, and origin 
[26]. Pesticides are usually grouped according 
to their chemical formulation in major families 
that include Organochlorine (OC) (Figure 2), 
Organophosphates (OP) (Figure 3), 
Carbamates (Figure 4), Carbanilates and 
Pyrethroids (Figure 5), Acylanalides, 
Benzonitriles, Benzoic acid derivatives, 
Dipyrids, Phthalimides (Figure 6), Triazines, 
Acetamides, Toluidines, Phenoxy alkanoates, 

and Benzonitriles. Pesticides are also 
categorized upon their target organism: they 
may be insecticide, herbicide (Figure 7), 
rodenticide, fumigants, fungicide, or insect 
repellent [27]. Pesticides may be naturally 
occurring or prepared in industries. They 
include the types of pesticides indicated in 
Figures 2, 3, 4, 5, 6, and 7.  

Organochlorine (OC) pesticides are highly toxic 
and are cancer causing, [28] estrogenic, and 
resistant to biodegradation [26, 21]. They also 

 

 

Figure 2. Organochlorine pesticides 
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cause bio-accumulation [29]. OCs are 
chlorinated hydrocarbons used in agriculture 
and mosquito control [30]. They have 10 to 30 
years half-life. They are soluble in lipids, stores 
inside the animal fatty tissue, and then passed 
down the food chain, harmful for many species, 
and prolonged relentless. Many countries of 
different continents have banned OC pesticides, 
but they are present in environment due to 
their high perseverance [31]. German chemists 
developed organophosphorous pesticides 
(OPPs), during World War (II). Organic solvents 
and water are solvents for OPPs. They are less 
persistent than chlorinated hydrocarbons in 
infiltrating and reaching groundwater, and 
some of them harm the NS. Plants absorb them, 
transfers them to leaves and stems, where they 
are fed to leaf-eating insects. OPPs are used as 
an alternative to the OC pesticides for 
controlling insects in fruits, vegetables, and 
grains around the globe. OPPs and carbamates 
are still used due to their relative low cost, low 
persistence, and wide applicability. They act by 
inhibiting acetylcholinesterase enzyme, and 
thus disturb the central nervous system of 
human and insects. Nearly 80% of 
hospitalization related to pesticides toxicity in 
humans is due to the OPPs exposure [32]. The 
use of OPPs became a major issue in the field of 
environmental chemistry. The OPPs residues in 
soil not only effect non-target organisms [33], 

but also disturb equilibrium in ecology of 
pesticide degrading microorganisms [13,34]. 
Their residue could be found on supplies and 
water bodies due to the broad use and high 
resistance to degradation. Moreover, their 
transformation byproduct can be a major shock 
on human health. Toxicity, bioaccumulation, 
and long-term effects are the factors of 
pesticides effecting environment. OPPs are 
found to be dangerous on human life owing to 
their mutagenic, teratogenic, and carcinogenic 
effects. Several diseases are linked with OPPs 
such as Lymphoma and Parkinson’s disease. 
OPPs have a harmful effect on nervous system 
as they have insecticidal and nematicidal 
actions credited to anti-acetylcholinesterase. 
OPPs represent a large portion of world insect-
killer utilization. OPPs reduce fertility in human 
being by decreasing the testosterones level. 
They are also responsible for behavioral 
problems in children and involved in immune 
problems in human and animals [35]. 
Intelligent quotients (IQ) of children are 
damaged by an organophosphate insecticide 
known as Chlorpyrifos. Benfuracarb damaged 
human cell and called as cytotoxic. 
Hypothyroidism is caused by pesticides which 
are ant cholinesterase [20]. Carbamate acid 
derivatives are highly poisonous to vertebrates 
and destroy a limited range of insects.  

 

 

Figure 3. Organophosphate pesticides 
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Persistence is relatively low. Pyrethroids are 
obtained from the natural origin. They are 
derived from pyrethrins which are natural ester 
containing chrysanthemum. They have low 
toxicity and long environmental stability. They 
have long half-life than natural form. They have 
an effect on NS, they have short-life than other 
pest control chemicals, and often utilized as the 
household insecticides. 

3. Functioning of Pesticides 

Upon knowing working method of pesticide, 
one can find its effects on target or non-target 
organism [36]. Here, the working mechanism of 
three types of pesticides is discussed: 
insecticides, fungicide, and herbicides. 

Pesticides according to their action can act as 
insecticides, which act on acetylcholine 
receptor, voltage-gated sodium ion channel, and 
acetylcholinestrase enzyme present in nervous 
system (NS) [37]. Insecticides show inhibition 
to acetylcholinesterase, and thus causes 
overstimulation in NS (e.g., carbamates and 
OPPs) [38]. Some insecticides attach to the 
receptor of neurotransmitter (i.e. 
acetylcholine), and kill insect due to the long 
lasting stimulation (such as neonicotinoid 
pesticides) [39]. The OCs insecticides inhibit 

GABA (gamma-amino butyric acid) receptor, 
and thus regulate chloride channel. Pyrethroid 
insecticides get attach with sodium gates and 
causes tremor and ultimately death in insects. 
Certain insecticides act as hormones and block 
chitin production inside insects and kill insect 
at very initial developmental stage (embryonic 
development). Endocrine system that is 
responsible for growth in organisms gets 
affected by insecticides. Aliphatic OCs 
insecticides hinder electron transport channels 
in insects, and thus energy supply is broken. 
ATP that is the energy currency in an organism 
is blocked by blocking mitochondrial electron 
transport chains, and thus death of insect 
happens. This kind of action is performed by 
organoinseticides [40]. 

Cell membrane of fungi consists of ergosterol. 
Fungicides block ergosterol synthesis such as 
canazole fungicides [41]. Benzimidazoles 
fungicides inhibit proteins synthesis in fungi 
and mammals by affection reassembly of 
spindle microtubule [41, 42]. Fungicides also 
affect targeted fungi from multiple sides and 
different processes occurring in cells [43]. 
These processes involve the disturbance of 
redox reaction in cells and restrain respiration 
[44-46]. They also inhibit signal flow [47]. 

 

 

Figure 4. Carbamate pesticides 
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Herbicides are used as a replacement to the 
mechanical methods for the removal of weeds 
[48]. Growth regulating herbicides are useful 
for the broad leaf weeds. For seedling growth 
inhibition thiocarbamates and acid amides are 
used [46]. As they inhibit growth of plants at 
root and shoot. Plant metabolic pathway is 
disturbed by herbicides containing highly active 
components that interact with biomembranes 
[49]. Herbicides are also capable of blocking 
lipid production. Glyphosate suppresses the 
formation of amino acids (mainly tryptophan, 
tyrosine, and phenylalanine) [50]. Glyphosate is 
an active constituent of roundup herbicides. 
Cartenoids that are photosynthetic pigments 
protects chlorophyll from damaging. Cartenoids 
get blocked by clomazone herbicides. 

4. Ways of Degrading Pesticides 

Despite the large benefits of pesticides, their 
accumulation in food makes them highly 
harmful for humans and environment. Pesticide 
residues found in food are as active ingredients, 
their breakdown products or their metabolites 
have severe damaging effect on human health. 
The intake of various pesticides has various 
risks behind. Not only ingestion, but only the 
exposure to pesticides effects human heath e.g., 
pesticides sprays effect spray workers. When 

pesticides residues are consumed they start to 
store in human tissues and causes the muscle 
weakness, disorder endocrine secretions, 
paralysis, and respiratory problems [32]. To 
avoid the potential exposure of pesticides to 
human, pesticides residue should be removed 
from foodstuff and ground water; efficient 
strategies should be developed to degrade 
pesticides. The alternative tools to pesticides 
are IPM (integrated pest management), ICP 
(integrated crop management), the organic 
farming, and the sustainable agricultural 
control. Remediation of soil includes ex-situ, in-
situ, and on-site methods. Ex-situ includes dig 
of soil and treated after transporting to another 
location. On-site method includes treatment of 
soil on-site after excavation. In-situ method 
involves treatment of soil without excavation. 
The selection of method is based upon pesticide 
distribution in soil either localized or 
distributed. Several methods are designed to 
degrade and get rid of pesticides due to their 
harmful nature. These methods include 
bioremediation [51], phytoremediation [52], 
electrokinetic remediation, advanced oxidation 
processes (AOPs), photolysis [53], 
photocatalysis [54], hydrogen-peroxide based 
methods [55], photochemical oxidation [56], 
adsorption, membrane filtration, and through 
microorganisms [51, 56-57]. Due to the ease  

 

 

Figure 5. Pyrethroid and Carbanilate pesticides 
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and economically cheap approach, adsorption is 
the most accepted method [30]. Bioremediation 
decreases the pesticide defilement of soils by 
improving characteristic biodegradation 
measures by means of metabolic exercises of 
microorganisms, and it is getting well-known 
for being a productive, practical, and climate 
amicable in-situ treatment. 

4.1 Bioremediation 

Biological method of remedy, also called 
bioremediation, is a capable skill that converts 
hydrocarbon containing compounds completely 
into the low poisonous end products like 
carbon dioxide or water. In contrast to the 
other techniques of pollutant removal, 
bioremediation is economic and beneficial to 
the environment. There are few types of 
bioremediation with microorganisms: 
remediation by native microorganisms, 
biological augmentation i.e. by using nonnative 
microorganisms, and also hereditarily tailored 
microorganisms [58]. Biological stimulation 
involves the nutrients increment or addition in 
e- acceptors. Hydrocarbon pollutants can be 
degraded by various native microbes found in 
water and soil [59]. Bacteria [60], fungi, and 
archaea are the most common bio-agents that 
can disinfect a location [61]. The bacterial 

genus pseudomonas is considered effective at 
degrading a wide range of pollutants [62]. It has 
a 90-99 percent degrading capacity. Microbes 
having resistance gene to the pollutant usually 
stay alive in the polluted environment [63]. 
Microbes use pollutant for food, decompose it, 
or grow bio-mass. Because these microbes do 
not keep or accumulate the pesticide, this aids 
in the decontamination of the area. The 
biological technology includes biological 
remediation of soil for maintaining the 
environmental equilibrium and stability. 

4.2 Phytoremediation 

Plant absorbs CO2 gas and releases oxygen gas. 
Rhizosphere microorganisms degrade 
interacting volatile organic compounds [64]. 
Leaf adsorption helps in the atmospheric 
particulates absorption. Plants also help in 
absorption of the insoluble salt precipitations 
formed in soil due to the combination of heavy 
metals with soils and sediments. Wetland is the 
transition zone between the aquatic and 
terrestrial ecosystem. It recycles nutrients, 
treat wastewater, and get rid of poisonous 
compounds, chemicals, and toxic metals [65]. 
Phytoremediation is sustainable due to these 
characteristics of soils. It also reinforces the  
 

 

Figure 6. Phthalimides and miscellaneous pesticides 
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reduction oxidation processes linking 
microorganisms present in rhizosphere and 
flora. Plants also remove nitrogen and 
phosphorous content from water and helps in 
the eutrophication reduction of the aquatic 
ecosystem. For example, Litmus and Aspen 
removes nitrogen and phosphorous at the 
removal rate of 40-90% and 75-99%, 
respectively [12]. The microorganisms of 
rhizosphere remedy for PCBs, pyrene, 
decabromodiphenyls, phenanthrene, toxic 
metals, and dioxins have been described in 
several investigations. The employment of a 
mixture of microbial strains with species of 
plants has brought remediation to forefront. 
For POPs polluted soils treatment [65-67], 
microorganisms and phytoremediation are 
coupled [68, 69]. 

4.3 Electrokinetic method of soil flushing 

Electrokinetic (EK) method of soil flushing is 
used for cleaning up soils that have been 

contaminated with various toxins [70]. The 
polluted soil can get rid of contaminants when 
passed through fluid flushing, and then 
treated/mobilized by electrokinetic methods 
like electro-osmosis, electromigration, and 
electrophoresis between anodes and cathodes 
in the presence of electric field [71, 72]. The EK 
procedure for treatment of contaminated soils 
has been integrated with the other techniques 
for decontamination like biological remediation 
or permeable reactive barriers (PRBs) [73]. Soil 
treatment that is impure by organic insoluble 
compounds, researchers are increasingly 
focusing on combining approaches for 
treatment, e.g., the EK remediation coupled 
with the biological PRBs. Soils polluted by 
polycyclic aromatic hydrocarbons (PAHs) and 
heavy metals are treated by coupling 
ultrasound-assisted soil washing and bio-
augmentation. To eliminate polybrominated 
diphenyl ethers from soils a microcosm was  
 

 

Figure 7. Common types of herbicides 
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achieved by using a TCFR (tourmaline catalyzed 
Fenton-like reaction) joint to TCFR+P 
(Phanerochaete chrysosporium). Nanoparticle 
based remediation (i.e. iron nanoparticles (0)) 
joint to EK was used. 

4.4 Advanced oxidation methods 

For wastewater and water treatment, the 
advanced oxidation processes (AOPs) have 
been employed involving the radical production 
during the reaction to degrade contaminants 
(Figure 8). Hydroxyl (OH) radicals are great 
oxidizing agents and they are not selective in 
attacking. This makes the basis of the advanced 
oxidation methods. Hydroxyl (OH) radicals 
have 2.8 V reduction potential which is 
significantly greater than other oxidizing 
agents. Hydroxyl radicals are commonly and 
widely accepted, indicating the ability to oxidize 
a lot of compounds during water treatment. 
Ozone with hydrogen peroxide, peroxone, UV 
with hydrogen peroxide, Ozone with UV, 

titanium dioxide photocatalysis, Fenton, Photo 
Fenton, Ultrasound, hydrodynamic cavitation, 
and persulfate processes are among the most 
commonly studied advanced oxidation 
processes. The process parameters, water 
quality, and radical scavengers all influence 
radical formation, attack, and degradation 
efficiency during reaction. Radicals like 
hydroxyl radical have a short half-life and react 
quickly to produce the other reaction products. 
Singlet oxygen radical, O2•, or peroxone radical 
are produced as by-products. During AOPs 
including radicals, complete destruction, and 
mineralization of target, the organic 
contaminants is achievable. The ability to 
completely mineralize organics into carbon 
dioxide and water is one of the AOPs 
advantages. Complete mineralization may 
result in no waste sludge production based on 
reaction conditions and the oxidation process 
employed. A single oxidation process can be 
used to de-contaminate a lot of target 

 

 

Figure 8. Reactor, tools, catalysts, radical production, and chemicals combined to give different types of AOPs. 
Numerous combinations of the aforementioned sorts of processes are feasible, with the potential for the 
synergy between them. The e-/current assisted AOPs uses electrodes and redox reactions are referred to as e-
AOPs. Catalysts are used in c-AOPs, and physical approaches are utilized in p-AOPs to increase the radicals’ 
formation. 
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contaminants in the complicated combinations. 
AOPs are non-selective while degrading 
contaminants i.e. they are capable of refractory 
compounds degradation, excellent efficiency, 
and efficiency to degrade a variety of DOM 
(dissolved organic matter). The cost of reagents 
and processes are relatively greater when using 
AOPs on a wide scale. In ozonation, ozone is 
used to degrade organic pollutants. With an 
oxidation potential of 2.07 V, it has a high 
oxidation potential. When alkaline 
circumstances, UV radiation, or transition metal 
catalysts are used to activate ozone, the 
production of great reactive radicals (hydroxyl 
and hydroperoxyl) occur that destroy 
contaminants readily. Hydrogen peroxide has 
1.77 V oxidation potential and its operation is 
not much useful. Hence, it is usually employed 
coupled as the AOPs strategy. The hydroxyl 
radical is generated via titanium dioxide 
photocatalysis or the UV assisted titanium 
dioxide photocatalysis, FeSO4, or ozone 
activation, it improves the efficiency for 
degradation. Although, the utilized activation 
method is determined by the contaminants 
presence and the characteristics of the solution 
[74, 75], organic pollutants have also been 
observed to be degraded via cavitation based 
accelerated oxidation. Significant 
characteristics of cavitation process include 
ability to oxidize at room temperature, the 
utilization of diverse cavitating device 
configurations, and the suppleness of their joint 
with AOPs. Once more, the solitary operation of 
cavitation is never believed to be successful, 
and thus oxidant joining has been required, so 
increase in deterioration degree can be 
achieved [76]. The ultrasound-induced 
cavitation also produces hydroxyl radicals, 
which aid in the breakdown or oxidation of 
pollutants [77]. The ultrasound-induced 
cavitation has been used to degrade numerous 
organic molecules and pollutants such as 
trichlorophenol and rhodamine B, similar to 
microwave [76]. The inclusion of a catalyst or 
oxidants is further predicted to improve the 
efficacy of sonochemical treatment. Microwave-
based oxidation technologies have a lot of 
promise for degrading pollutants in 
wastewater. Microwaves do not have enough 
ability for bond breakage, particularly of 

surfactant like chemicals, but combining them 
with other degrading materials like oxidizing 
agents that are able to increase absorption of 
microwave radiations, induce hotspot and can 
produce radicals, hence result in intensity in 
degradation. Microwaves are able to speed up 
the reactions with effects (including thermal or 
other) and they have sparked curiosity in 
microwave-assisted techniques such as ruining 
of contaminants and wastewater treatment 
[78]. 

4.5 Photocatalysis 

Certain chemical reaction proceeds by 
absorbing photon or light in certain wavelength 
in the range of ultraviolet or visible region (10 
nm-750 nm). Light absorption depends on the 
structure of compound and location of double 
bond. Electrons in the valence band absorb 
photons and excite to conduction band. Due to 
the electron excitation, a positive charged hole 
is generated on the valence band in place of 
electron. This excited electron may join hole 
after some times or it may produce a radical, 
after reduction, on surface of compound. 
Photoreactions are speed up by the presence of 
catalyst called as photocatalyst, and such 
acceleration is called photocatalysis [79]. It is 
an approach to photochemical detoxification. 
Mostly, semiconductors are used as 
photocatalyst. Photocatalyst can be defined as a 
substance than can produce the chemical 
transformation of reactants upon absorbing 
photons and can attain the original chemical 
composition after each interaction with 
reaction participants. It is efficient in 
stoichiometric amounts. Hence, photocatalysis 
can be defined as “an alternation in time of a 
reaction or start of a reaction on interaction 
with UV, visible, IR radiations in the 
photocatalyst presence, which is responsible 
for the light absorption and transformation of 
reactants.” Photocatalysis is employed in 
organic synthesis, water, and air 
decontamination and hydrogen production 
[24]. Photocatalyst used in decontamination of 
air and water are classified in two groups; 
semiconductors and organic compound and 
their complexes with metals. Semiconductor 
photocatalyst are used in heterogeneous 
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photocatalysis. In photocatalysis, electron 
promotion causes charge separation between 
conduction and valence band which then helps 
in radical formation. For degradation of organic 
pollutants involving photocatalysis, the 
radicals’ formation, for example, superoxide 
radicals (O2•) or hydroxyl radical (OH•) is 
necessary. These radicals are essential for 
organic compounds degradation because they 
act as electron transport channel from 
photocatalyst to organic compound. Hydroxyl 
radical is produced by water oxidation through 
hole, also produced from hydrogen peroxide 
due to its interaction with light or other 
superoxide radicals. The excited electrons in 
the conduction band reduce oxygen molecule 
results in the superoxide formation. Reduced 
oxygen species are produced as indicated in the 
following equations steps:  

1. 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟) 𝒉𝒗⃗⃗⃗⃗  ⃗ ℎ𝑜𝑙𝑒𝑠 + 𝑒− 
2. 𝑂2 + 𝑒− → 𝑂2

−• 
3. 𝐻2𝑂 + ℎ𝑜𝑙𝑒𝑠 → 𝐻𝑂• + 𝐻+ 
4. 𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂2 
5. 𝑂2

−• + 𝐻2𝑂2 →  𝑂𝐻− + 𝑂2 + 𝐻𝑂• 

4.6 Semiconductor based photocatalyis 

AOPs are divided into two categories: 
homogeneous AOPs and heterogeneous AOPs. 
When phase of sample is different to catalyst, 
the heterogeneous AOP can be used to remove 
pesticides. Photocatalysis based on 
semiconductors is a low-cost heterogeneous 
AOP [80]. Semiconductor based photocatalysis 
has following benefits; cost-effectiveness, non-
toxicity, proficient light absorbance, and 
extended life without a significant 
photocatalytic pastime [81]. Under the 
solar/UV irradiation, photocatalytic 
semiconductors such as ZnO and TiO2 are 
commonly employed for pesticide breakdown 
[82]. The TiO2 semiconductor is less hazardous, 
less expensive, and has been indicated as 
effective catalyst to degrade poisonous 
compounds [81]. On the other hand, the Eg 
value of TiO2 i.e. 3.2eV, results in electron-hole 
pairs recombination, ineffective adsorption, and 
limited recovering ability afterward 
degradation are limitations that restrict its 
commercial potential [83]. ZnO, a 

semiconductor with a band gap similar to TiO2, 
is also utilized as a photocatalyst [84]. The 
results achieved by using ZnO provide excellent 
satisfaction in terms of high-scale water 
treatment, environmental pollution removal, 
and toxic organic species detoxification. In 
addition, ZnO has a broad band gap in UV and 
also recombination is fast. As a result, the 
created active charge carriers aggregate very 
quickly, slowing down the reaction rate. The 
photocatalytic breakdown of pesticides is also 
aided by the CuO semiconductor. Catalytic 
potential of semiconductors decreases over 
time because of recombination and adsorption 
capacity decreases. The alternative ways for 
overcoming these constraints take account of 
doping of metal or non-metal in semiconductor, 
mixing the semiconductor in other partly-
conductor with a dissimilar value of band gap, 
and creating any composite material that has 
compounds (dual/ternary) [85-87]. 

4.7 Adsorption 

For polluted soils treatment, principle of 
adsorption is employed using in-situ 
amendments and considered as an economic 
solution. Biochar is a popular modification that 
is both environmentally beneficial and includes 
the broad spectrum sources of raw materials 
[88]. Porous carbon containing solid made by 
without oxygen pyrolyzing of biomass is called 
biochar [89]. Biochar is most commonly used as 
a soil additive to minimize irrigation, enhance 
its quality, increase rate of crop output, less 
emissions of greenhouse gas and fertilizer 
needs. Two major factors, surface area and 
porosity, influence biochar's sorption capacity 
for organic contaminants such as pesticides 
[90]. Higher sorption capabilities will arise 
from more porous materials and more surface 
area. The sorption capacity of biochar is 
dependent on presence of amide, carboxylic (–
COOH), lactonic, hydroxyl (–OH), and amine 
groups on surface. The amount of these groups 
on surface of biochar is influenced by two 
important factors: pyrolysis temperature and 
source material [90-93]. The alkali catalysis 
mechanism in biochar can speed up the OP 
insecticide hydrolysis and carbamate 
insecticides hydrolysis in the soil [94]. Biochar 
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is alkaline, in general, and its pH rises as the 
pyrolysis temperature rises. However, 
depending on the source material, there are a 
few exceptions, for example, biochar made 
through sludge of wastewater or straw 
obtained from wheat relatively on low 
temperatures i.e. 400 °C was acidic in nature 
(pH 4.87-6.11). Functional groups are essential 
elements impacting biochar's pesticide sorption 
capabilities, and aromatic structure is also 
important for biochar's long-term behavior in 
the soil. In fact, the pyrolysis temperature 
determines the majority of biochar features, 
and the ratio of hydrocarbons reflects structure 
of the aromatic compound present that can also 
determines size of pores and surface area of 
adsorbent. Concerning the treated biochars for 
soils remedy, it is necessary considering if 
treatment processes are economic or not, albeit 
they have a good sorption ability [95]. In 
addition, biochar found as an effective pesticide 
amendment for its sorption ability which is able 
to reduce the biological degradation of 
pesticides within soils. In contrast, a lot of 
microbial stimulation can be caused by 

biochars making a high microbial degradation 
of pesticides. Consequently, the dominant 
action of biochar determines its effect of on 
biodegrading pesticides [96]. 

4.8 Membrane filtration 

Separation systems based on membranes 
(pressure assisted) offer a great removal 
aptitude, economic, and operational flexibility, 
the membrane’s material is available feasibly 
and energy consumption is low [97, 98]. 
Membrane methods, on the other hand, are 
plagued by the production of cake layers, which 
eventually block pores of membrane and make 
it dirty. The significant reductions in water flux, 
increase in energy consumption, and cost of 
treatment are fouling aftermaths [99]. 
Furthermore, the membrane dependent 
filtering methods focus contaminants keen on 
high-concentration remains, which should be 
treated further before final discharge.  

Pesticide residues cause’s harmful effects to 
human health that is mentioned in Table 1. 

Table 1. Representative studies on different pesticides 

Pesticide 
Group 

Pesticide 
Name 

Negative 
Effects 

Degradation Studies Ref. 

OCs 

Dichlorodiphen
yltrichloroetha

ne 
(DDT) 

Nausea and 
Seizures. 

Production  of oxidative radicals (SO4-, OH) and 
reductive radicals (S2O8-) during oxidation 
technologies involving thermally activated  
persulfate  gave best degradation of DDTs. 

[100] 

OCs 

Dichlorodiphen
yldichloroethyl

ene 
(DDE) 

Affect adipose 
tissues and 

serums. 

Microbial fuel cells are able to degrade DDE in 
60 days. After 60 days, MFCs stop proper 

functioning due to a decrease in water content. 
[101] 

OCs Dicofol 
Nausea and 
damage the 

skin. 

Ni/Zn dopped multi-walled carbon nanotubes 
were able to maximally degrade dicofol in 90 

minutes, at pH 6 and 318 K. 
[102] 

OCs Lindane 
Damage CNS 
and immune 

system. 

For degrading organic contaminants in water 
sulphate radical based AOPs was employed. 
The efficiency of the UV assisted persulfate 
procedure to degrade lindane in water was 

explored with 93.2 percent. 720 mJ/cm2 was 
the UV facility during lindane elimination. It 
was found to be the first-order kinetics for 

pesticide breakdown during proton 
abstraction by sulphate and chloride remobel 

via carbon chloride bond by using ultraviolet-C 
light. 

[103] 



 

 

2023, Volume 5, Issue 1 

 

Journal of Chemical Reviews 

 

44 

 

OCs 
Pentachlorpheno

l 

Negative 
effect on 

liver, kidney, 
and CNS. 

Using crosslinked modified chitosan based activated 
charcoal, pentachlorophenol degradation proved 

exothermic, practical, and spontaneous. The 
pseudo-second order reactions were used in the 

mechanism. 

[104] 

OPP 
Monocrotophos 

(MCP) 

Strong 
cholinesteras

e inhibitor. 

By using a one-pot solvothermal technique 2-
dimensional/2-dimensional TiO2 mounted on Fe 

(MIL-88) semiconductor hetero-junction was 
created and grafted. Through visible light 

irradiation, the TiO2/Fe (MIL-88) composite 
degraded this herbicide. Fe (MIL-88) and TiO2/Fe 

(MIL-88) have specific surface areas; 1175 and 935 
m2g -1 and pore volumes; 0.69 and 0.57 m3g -1 

respectively. Various parameters were used to 
confirm the TiO2/Fe (MIL-88) oxidizing ability for 
the breakdown ability of MCP that include pH(1-

12), temperature (27.3 °C), and starting MCP 
concentrations of 20 to 60 mg/L. 

[105] 

OPP Malathion 

Blurred 
vision, 

diarrhea, and 
breathing 
problems. 

Malathion degradation efficiency was examined by 
utilizing Fenton (Fe2+/H2O2), ultrasound/UV with 
Fenton (Fe2+/H2O2/UV/US) and UV with Fenton 
(Fe2+/H2O2/UV) methods. Fe2+concentration, pH, 
H2O2 concentration, and Malathion concentration, 
these all investigated as operational parameters 

that affect the degradation rate. In subsequent ideal 
situations: hydrogen peroxide conc. 0 to 700 mgL-1, 
pH (3), Malathion conc. 0-20 mgL-1,  conc. of  Fe2+ 0 
to 20 mgL-1, 98.79 percent for (Fe2+/H2O2/UV/US), 
70.92 percent for the (Fe2+/H2O2/UV), and 55.94 
percent for (Fe2+/H2O2) was founded degradation 

ability. 

[106] 

OPP Glyphosate 

Oral or nasal 
discomfort, 

skin 
irritation, and 

mild 
conjunctivitis. 

At pH 4, glyphosate has a maximal adsorption 
capacity of 2.855mmolg-1 on UiO-67/GO. It followed 

Langmuir model of adsorption. It also obeys the 
pseudo-second-order kinetic model also. UiO-

67/GO performed adsorption of this pesticide by 
many Zr-hydroxyl groups present on graphene 

oxide surface, vast surface area of accessible 
graphene oxide helped impounding of the objective 

OPPs. 

[107] 

OPP Methyl Parathion 
Reparatory 

and eye sight 
problems. 

The produced nanocomposite (GO-Fe3O4/Bi2MoO6) 
had 2.5 eV band gap that was appropriate for visible 

light photocatalytic action. This nanocomposite 
photocatalyst showed >95% degrading ability for 

methyl parathion, after 120 minutes. The 
photocatalyst was recovered from the solution after 
the reaction concerning its magnetic property. Even 

after five cycles, this nanocomposite could 
decompose methyl parathion with   competence 

>90%. 

[108] 
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OPP Dimethoate 

Blurred vision, 
diarrhea, and 

breathing 
problems. 

Through a one-step hydrothermal technique, built Ag 
NPs ornamented CNG (GO-Graphite N2 carbide). These 

are self-assembled micro-flowers from nano-sheets. 
The Ag-nps alteration not only enhanced the uptake of 

visible region, but also successfully boosted the 
movement of photo-generated electrons via the SPR 
action and the plasmonic heterojunction produced, 

according to different physical/chemical 
characterizations. The dimethoate breakdown rate of 

Vis/Ag@CNG/sulfite has found to be 15.8 times > 
Vis/Ag@CNG. 

[109] 

Carbam
ate 

Carbaryl 
Vision and 
stomach 

problems. 

In varied growing circumstances, the breakdown of 
carbaryl by Xylaria sp. was investigated. While 

cytochrome P450 was effective in liquid culture, 99 
percent of the additional carbaryl was removed, which 

was equivalent to the degradation rate of fungus 
(Pleurotusostreatus) with excellent bio-remediation 
capabilities. Carbaryl decomposition is aided by the 

presence of Mn2+. In non-sterile soil, 59 percent 
carbaryl was removed, compared with 72.17 percent in 

sterile soil, signifying that Xylaria sp. BNL1 can 
withstand environment and related infection. 
Moreover, carbaryl was rapidly digested by 

intracellular fractions comprising laccase, CYP450, and 
carbaryl esterase. 

[110] 

Carbam
ate 

Carbofuran 
It is fatal and 

leads to 
hypertension. 

For the photo-degradation of carbofuran driven by LED 
light, the mixed nanostructure Fe3O4-SnO2-gC3N4 was 

used. Under the visible light, the catalyst demonstrated 
excellent photocatalytic performance, with an 

efficiency of 89 percent and rate constant was 0.015 
min1 (the pseudo first-order). Addition of Fe3O4 

increased the catalyst's magnetic separation after 
repeated periods of operation, enhancing the system's 

practical value in combating organic contaminants. 

[111] 

Carbam
ate 

Aldicarb 

Weakness, 
headache, 
sweating, 
tearing, 

blurred vision, 
tremors, and 

nausea. 

By sol-gel precipitation approach, high visible light 
sensitive anatase nitrogen and sulphur combine doped 

and only nitrogen doped nano-titania was created. It 
was discovered that when exposed to visible light for 
half an hour NS doped catalyst system (1.5 gL-1), more 

than 80% of the aldicarb degraded. This increased 
activity is related to the symbiotic influence of two 
contaminants in its framework (both N and S) that 

reduces the band gap. 

[112] 

Acylanal
ide 

Alachlor 
Malignancy, 

mutagenic, and 
thyroid effect. 

Utilizing CuS- BiFeO3 heterojunction materials, a photo 
(visible light) assisted catalytic method has been 

formed for degradation of alachlor insecticide. BiFeO3 
nanostructures and nanorods of Copper-Sulphide made 
heterojunction material. By photo illumination, hetero-

junction material successfully catalyzed the 
degradation of alachlor herbicide, achieving >95% 

breakdown in 60 minutes. Use of sustainable power, 
relatively inexpensive, high performance, durability, 

and reusability of the catalyst material are all appealing 
properties of the devised photocatalytic process. 

[113] 
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Phenoxy-
Alkanoates 

2,4-D 
(2,4-

dichlorophenoxyacetic 
acid) 

Headache, 
nervousness, and 
unconsciousness. 

The degradation of 2,4-D was first 
attempted electrochemically by using 
Blue-TiO2 nanotubes anode with the 

minimum power utilization (0.14kWhm3) 
yielding rate constants 2.57 times larger 

than that produced by BDD (boron-
doped diamond) anode also 6.32 times 
larger than that produced by using DSA 
(dimensionally stable anode). On Blue-

TNT, the input of the accountable radicals 
for 2,4-D degradation was 95 percent  by  

hydroxyl radical and just 2 percent by 
sulphate radical, in contrast to the BDD 
anode (radical assisted or non-radical 

based). 

[114] 

Phenoxy-
Alkanoates 

2,4,5-
Trichlorophenoxyacetic 

acid 
Liver damage. 

Electrochemical also photo-
electrochemical oxidation techniques 

were used to investigate for degrading 
this pesticide. TiO2 has structure of 

nanotube whether PbO2 NPs are present 
or not. For PEC oxidation TiO2-PbO2 was 

utilized. The total organic carbon was 
often used to determine the height of 

decomposition. PE behavior changes with 
potential in 0.5M sulphuric acid which 

was measured by using LSV method at 5 
mVs-1 (slow sweep of linear scanning 

voltametry) for PEC studies. After 120 
minutes of electrolysis at 30 mAcm2, 

oxidation of pesticide by  Sb-SnO2 was 
100% and 95 percent on PbO2, indicating 

that the EC is an effective treatment 
approach for removing this pesticide 

from effluents. 

[115] 

Triazines Atrazine 
Kidney failure 

and heart 
collapse. 

Atrazine decomposition was affected 
differently by ashes and biochar. 

Compost was made from SBA; sugarcane 
bagasse ash (5 and 10%), RHA; rice husk 
ash (5 and 10%), and WBC; wheat straw 

biochar (1 and 5%). RHA lowered the 
half-life of atrazine at lower 

concentrations (50 gg-1) compared with 
control bio-mixtures, while SBA and WBC 

(1 percent) had no effect. WBC (5%) 
increased the half-life of atrazine by 200 
percent (50 gg-1) and 300 percent (100 

gg-1). The addition of pesticide-degrading 
cultures to bio-mixtures improved 

atrazine breakdown. 

[116] 
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Triazine Simazine 

Reproductive 
disarray and 

kidney 
collapse. 

The effect of H2O2, Fe and photo situations for 
breakdown of this pesticide employing AOPs was 

studied by using the D-optimal model. In AOPs that use 
sunlight, the effect degree of the operational variables 
is set in the following order: H2O2<Fe<time, whilst in 

AOPs with ultraviolet assistance the increasing order is 
Fe<H2O2<time for degradation ability. In addition, due 
to the creation of reactive intermediates, degradation 

was larger than mineralization. After analyzing the 
kinetic constants obtained, it was determined that 

UV/H2O2 with 2.5 ppm H2O2 would be the best 
technique to use in the conduct of water. 

[117] 

Dipyrid 
Paraquat 

(PQT) 
Kidney failure. 

rGO (reduced graphene oxide) GO (graphene oxide) 
with chitosan (CS) were produced by using a simple co-

precipitation technique. CS/rGO was able to degrade 
85.49 percent of PQT solution in 60 minutes when 

exposed to the visible light, and this capacity 
maintained at 82 percent after 5 repetitions under the 
same circumstances. The pseudo-first order kinetics 

was used to determine the kinetics and rate of reaction 
for degradation process of PQT. 

[118] 

Dipyrid Diquat Skin irritation. 

By simultaneous adsorption and photo-degradation 
procedures, OH-GCN (hydroxyl assisted graphite 

carbon nitride) samples were used as bi-functional 
substances for the effective elimination of diquat 

dibromide pesticide. The active sites for this pesticide 
sorption process were hydroxyl groups on surface, as 
revealed by the structural characterization. The study 

of adsorption showed 110 times greater adsorption 
capacity (159.3 mgg-1 at pH 7 and 25 °C) than perfect 
CN. After 240 minutes of visible-light irradiation, the 

overall degradation ratios were 97.1 percent. 

[119] 

OPP Chlorpyrifos 

Nausea, 
dizziness, and 

confusion. 
Also, 

respiratory 
paralysis and 
death in the 

case of major 
accidents like 

spills. 

Halloysite Nanotubes (HNT) functionalized with 
chitosan (CTS) was used as responsive nano-supports 

for the grafting of copper (Cu) and laccase (Lac) for 
chlorpyrifos breakdown. At neutral pH and room 

temperature, chlorpyrifos decomposition with the 
nanocomposite was as high as 97 percent for 50 g/mL 

chlorpyrifos. Even at different temperatures and pH 
levels, the nano-composite maintained 97 percent 

breakdown ability. The recyclability investigation was 
repeated five times, with the breakdown percentage 

remaining the same (95%) after each round. 

[120] 

 
5. Conclusion 
Pesticides are used to boost crop yield, prevent 
vector illnesses, and kill, or inhibit dangerous 
pests. On the other hand, they have the 
unmistakable negative consequences. 
Destruction of water and soil quality harmfully 
affects the environment inhabitant because 
they are considerably affecting the environment 
and mammals. Biodiversity get affected by 
pesticides and their contact either directly or 
indirectly but on long-term basis pose the 

solemn health risks for human beings. Cancer, 
abnormality in reproduction, diabetes mellitus, 
illnesses of respiration, and problems of 
neurology are just some of the acute health 
concerns they might cause. To remediate the 
polluted ecosystem, various remediation 
approaches have been documented, including 
adsorption, biological remediation, AOPs, and 
so on. Adsorption and biological remediation, 
on the other hand, are mentioned to be the 
ideal treatments since they are ecologically 
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benign, economically effective, and produce less 
harmful byproducts. To lessen the risk of 
pesticide poisoning, governments should work 
together. By enacting the rigorous legislation 
and toxicity standards, the necessary steps 
should be done to ensure the efficient 
management of pesticides. The integrated pest 
management (IPM) can aid with pesticide use 
plus control of chemicals. Manufacturing of 
pesticides should include more care and a 
higher safety profile to have a lower 
detrimental influence on the environment and 
humans. 
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