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A B S T R A C T 

Molecules with 1,3,4-oxadiazole ring structures have potential 
pharmacological relevance. These organic molecules are potentially 
reported for their medicinal importance. In this mini-review, different 
strategies for the synthesis of biologically important molecules of 1,3,4-
oxadiazole ring are briefly summarized. Antimicrobial, anticancer, anti-
inflammatory, anti-tubercular, molluscicidal, hypoglycemic, 
anticonvulsant, and antiprotozoal activities of the title compounds are 
also briefly reviewed. Significant papers were chosen and compiled the 
report until March 2022. 
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 3.3. Anti-inflammatory activities 

3.4. Anti-tubercular activities 

3.5. Molluscicidal activities 

3.6. Hypoglycemic activities 

3.7. Anticonvulsant activities 

3.8. Anti-protozoal activities 

4. Conclusion 

1. Introduction 

harmacologically relevant heterocyclic 
compounds play a key role in the fight 
against diseases affecting both human 
and animal living organisms, as well as 
plants. Finding out about new 

molecules with a potential biological effect, not 
yet described in the literature, is one of the most 

important aspects in the development of 
medicine, agriculture, and other allied sectors. 
Compounds showing desirable biological 
activity include heterocyclic moieties such as 
1,3,4-oxadiazoles. Oxadiazole is a heterocyclic 
compound which has the molecular formula 
C2H2N2O. 1,3,4-Oxadiazole (Figure 1) is one of 
the four isomers of oxadiazole [1-2]. 

 
 

N

N

O

N
N

O
N

N

O

N
N

O

1,2,3- 1,2,4- 1,2,5- 1,3,4-

1

2

34

5

 
 

Figure 1. Structures of oxadiazole isomers 

There are several studies which indicate that 
compounds with the 1,3,4-oxadiazole ring in 
their structure have a multidirectional 
pharmacological action [3-13]. Derivatives of 
1,3,4-oxadiazole have antibacterial [14], 
antimalarial [15], anti-inflammatory [16], anti-
depressive [17], anticancer [18], analgesic, and 
antiviral [19] effects. The anti-cancer effects of 
1,3,4-oxadiazole derivatives appear to be of 
special interest, given the ever-increasing 

incidence of many types of cancer. 1,3,4-
Oxadiazole, itself is not commonly used in 
organic chemistry, but many of its derivatives 
have biological activities [20-21] and are used in 
the medicinal field [22-25]. The stable 
oxadiazoles appear in a many pharmaceutical 
drugs which include raltegravir, fasiplon, 
butalamine, oxolamine, pleconaril, and 
nesapidil. Few examples of drugs which possess 
1,3,4-oxadiazole rings are displayed in Figure 2. 
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Figure 2. Pharmacologically relevant drugs containing 1,3,4-oxadiazole rings

In continuation of our vast experience in the 
chemistry of oxadiazoles, we, herewith, present 
a brief compilation of both synthetic strategies 
and biological activity of the title compounds 
[26-30]. 

2. Synthetic strategies for 1,3,4-oxadiazole  

As depicted in Figure 3, 1,3-dibromo-5,5-
dimethyl hydantoin is an efficient oxidizing 
agent for cyclization reactions involving acyl 
thiosemicarbazides (2) to produce 5-aryl-2-
amino-1,3,4-oxadiazoles (3). The fundamental 
advantage of this protocol [31] is that the 
reagents utilized are inexpensive and safe to use 
in large-scale synthesis where alternative 
oxidizing agents are unavailable.

HN NH

R

O S

NH2

NaOH, KI

1,3-Dibromo-5,5-di
methylhydantoin

N

O

N
NH2

R

2 3  
Figure 3. Synthesis of 5-aryl-2- amino-1,3,4-oxadiazoles

The synthesis of 5-substituted-1,3,4-
oxadiazole-2-thiol (thione) 4 was reported by 
Koparir et al. [32], which requires an initial 
reaction between an acyl hydrazide and CS2 in a 
basic alcoholic solution, followed by 
acidification of reaction mass as illustrated in 

Figure 4. According to a literature review, this 
method is used to make a wide range of 1,3,4-
oxadiazole derivatives. For such compounds, 
thiol 4-thione 5 tautomerism is known, and one 
of the two forms frequently predominates.

NHNH2H3C
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5  
Figure 4. Synthesis of 5-substituted-1,3,4- oxadiazole-2-thiol (thione)
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The preparation of 5-((naphthalen-2-yloxy) 
methyl)-N-phenyl-1,3,4-oxadiazol-2-amine (7) 
in reasonable yield by heating 2-[(naphthalen-2-
yloxy)acetyl]-N-phenylhydrazine carboxamide 

(6) ethanol in the presence of NaOH and I2 in KI 
is another interesting approach reported by El-
Sayed et al. [33] (Figure 5).

 
Figure 5. Synthesis of 5-((naphthalen-2-yloxy) methyl)-N-phenyl-1,3,4-oxadiazol-2-amine 

Jha et. al. [34] explored the synthesis of 1,3,4-
oxadiazole with 2,5-disubstitution (8) by 
cyclization process with substituted aromatic 

hydrazides in CS2 and aromatic acids in POCl3 
almost a decade ago (Figure 6).

NHNH2

O

RCOOH, POCl3

N

O

N

8
 

Figure 6. Synthesis of 1,3,4- oxadiazole

An imine CH functionalization of N-arylidene 
aroyl hydrazide with a catalytic amount of 
Cu(OTf)2 has provided ready access to 
symmetrical and unsymmetrical 2,5-
disubstituted-[1,3,4]-oxadiazole 9. This is the 
most common example of amidic oxygen acting 

as a nucleophile in an imine CH bond oxidative 
coupling catalyzed by Cu catalyst [35]. These 
reactions may be carried out in a natural 
environment with air and moisture, making 
them extremely helpful in the preparation of 
organic molecules (Figure 7).

HN NH
Ph

O
Ph Cu(OTf)2, Cs2CO3, O2

N

O

N
Ph

Ph

9  
Figure 7. Synthesis of symmetrical and unsymmetrical 2,5- disubstituted-[1,3,4]-oxadiazole

Gaonkar et al. [36] described the oxidative 
cyclization of N-acyl hydrazones by chloramine-
T under microwave irradiation to produce 

corresponding 5-substituted 1,3,4-oxadiazoles 
10 (Figure 8).
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Figure 8. Synthesis of 5-substituted 1,3,4-oxadiazoles

A range of symmetrical and asymmetrical 
1,3,4-oxadiazoles with aryl, alkyl, and vinyl 
substitutions at 2,5-positions were synthesized 
in a skilled and diversified method [37]. With 

potassium carbonate, 1,3,4-oxadiazoles 11 were 
synthesized utilizing substituted aryl 
hydrazones and stoichiometric molecular 
iodine, which is a viable and transition metal-
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free oxidative cyclization of crude acyl 
hydrazones generated via condensation of 
aldehyde and hydrazide (Figure 9).

R1

O

H H2NHN

O

R2
+

K2CO3, I2

N

O

N
R2

11

R1

EtOH, reflux

DMSO, 100 0C  
Figure 9. Synthesis of symmetrical and asymmetrical 2,5-disubstituted 1,3,4-oxadiazoles

Iodine-mediated oxidative C-O formation via 
condensation of a variety of aldehydes and 
semicarbazide was used to make 2-amino-
substituted 1,3,4-oxadiazoles 12 [38] (Figure 
10). This approach is a non-metal sequential 

procedure with aliphatic, aromatic, and 
cinnamic aldehydes which yields 2-amino 
substituted-1,3,4-oxadiazoles in a fast and 
versatile manner.

R1

O

H H2NHN

O

NH2
+

K2CO3, I2, 1-4-dioxane

N

O

N
NH2

12

R1

HOAc, MeOH/H2O

 
Figure 10. Synthesis of 2-amino-substituted 1,3,4-oxadiazoles

Using CBr4 as a bromine source, an extremely 
effective eosin Y catalyzed oxidative hetero-
cyclization of semi-carbazone was developed 
using visible light photo redox catalysis [39]. 

This methodology provided a fastest, smooth, 
and operational admission to substantial 5-
substituted 2-amino-1,3,4-oxadiazoles 13 
(Figure 11).

N NH

R

H O

NH2

CBr4, eosin Y, 

green LED N

O

N
NH2

R

13  
Figure 11. Synthesis of 5- substituted 2-amino-1,3,4-oxadiazoles

Through consecutive isocyanide additions into 
NH and OH bonds of hydrazides [40], a novel Pd-
catalyzed oxidative annulations reaction was 

produced, allowing impactful access to 
beneficial 2-substituted amino-1,3,4-oxadiazole 
14, as illustrated in Figure 12.

Ph N
H

O
H
N

O

+ R NC

Pd(OAc)2
N N

OPh

NH

R

14
toluene, 80 0C, O2

 
Figure 12. Synthesis of 2-substituted amino-1,3,4-oxadiazole

A simple one-pot protocol [41] for preparation 
of a range of 2,5-disubstituted-1,3,4-oxadiazoles 
15 was described by condensing monoaryl 
hydrazides with acid chlorides in solvent HMPA 

under microwave heating, as shown in Figure 
13. The yields were found good to excellent, the 
technique was fast, and there was no need for an 
acid catalyst or a dehydrating agent.
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Figure 13. Synthesis of 2,5-disubstituted-1,3,4-oxadiazoles

The ready formation of 5-substituted 2-(N-
alkyl/aryl)-1,3,4-oxadiazoles 16 was accounted 
for using a simple and broad convention [42]. In 
this case, hydrazide was acylated with the 
appropriate isothiocyanate to produce 

thiosemicarbazide, which was subsequently 
treated with tosyl chloride/pyridine for 
intervening cyclization to obtain 5-substituted 
2-(N-aryl/alkyl)-1,3,4-oxadiazoles 16 (Figure 
14).

 
Figure 14. Synthesis of 5-substituted 2-(N-alkyl/aryl)-1,3,4-oxadiazoles

Ramazani et al. [43] reported a one-pot 
synthesis of the 2,5-disubstituted 1,3,4-
oxadiazole derivative 17 in CH2Cl2 at room 

temperature with high yields utilizing (N-
isocyanimino) triphnylphosphorane, a 20 amine, 
a carboxylic acid, and an ArCHO (Figure 15).

 
Figure 15. Synthesis of 2,5-disubstituted 1,3,4- oxadiazole derivative

Brain et al. [44] developed a novel 
methodology for generating 1,3,4-oxadiazoles 
18 from 1,2-diacylhydrazines reacting with 

Burgess reagent under microwave conditions 
(Figure 16).
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O

O
PEG

Microwave/THF 18  
Figure 16. Synthesis of 1,3,4-oxadiazoles

3. Pharmacological activities and recent advances 

A wide range of biological actions have been 
discovered in 1,3,4-oxadiazole derivatives such 
as antibacterial, anticancer, anti-inflammatory, 
anticonvulsant, pesticide, monoamine oxidase 
inhibitors (MOA), antihypertensive, and other 
properties, etc. 

3.1. Antimicrobial activities 

5-(5-methylisoxazole-3-yl)- 3-substituted 
aminomethyl-2-thio-1,3,4-oxadiazoles 19, 4-
acetyl-2-thio-1,3,4-oxadiazoles (5-
methylisoxazole-3-yl) 2-aryl-5-9 and -5-
substituted 1,3,4-oxadiazoles 20 (5-
methylisoxazole-3-yl)-1,3,4-oxadiazoles 21 
were synthesized using the Mannich reaction 
[45], and their anti-bacterial activation against 
Staphylococcus aureus, Escherichia coli, and 
Bacillus subtilis was evaluated by cup plate 
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procedure at 100 g/mL. 4-Acetyl-2-phenyl-(5-
methylisoxazole-3-yl) 2-aryl-5-9-substituted 
1,3,4-oxadiazoles and 5-substituted 1,3,4-

oxadiazoles (5-methylisoxazole-3-yl) were 
found to be the most active candidates in this 
family of 1,3,4-oxadiazoles (Figure 17).

O N

H3C

O

NN

R1

R2

NH2

O N

H3C

O

NN

O

CH3

O N

H3C

O

NN

R2

R1

R19

20 21

S

 
Figure 17. Family of 1,3,4-oxadiazoles exhibiting antimicrobial activity

Some new 1,2,4 triazolo-1,3,4-oxadiazole 
derivatives 22, oxa-di-azolo [1,3,5]-triazine 23, 
and triazolo-1,3,4-oxadiazole 24 were tested 
(Figure 18) for their anti-bacterial activity in 
vitro on Gram-negative bacteria (S. typhi and E. 
coli.) and Gram-positive bacteria (S. aureus) by 
Mulwad and Chaskar [46]. Tube dilution 

techniques were used to determine the 
minimum inhibitory concentration (MIC) of 
ciprofloxacin, cloxacillin, and gentamicin. The 
majority of the compounds in this class have 
been found to have considerable biological 
action.

 
Figure 18. 

The preparation of 5-(2,4-dichloro-5-
fluorophenyl) -3-[(substituted-amino)methyl]-
1,3,4-oxadiazole-2(3H)-thione 27 and 2-
oxadiazole-2(3H)-thione (2,4-dichloro-5-
fluorophenyl) -5-(substituted-sulfanyl) -1,3,4-
oxadiazole 28 has been reported [47] and 
evaluated for antibacterial property on S. aureus, 
E. coli, and K. pneumonia by a serial dilution 

technique using nitrofurazone as the reference 
drug. The majority of tested chemicals were 
active in a similar range to the standard [48]. It’s 
possible that the presence of 2,4-dichloro-5-
fluorophenyl and 4-chloroaryloxy methyl 
groups explains the reason for the activity 
(Figure 19).

 
Figure 19. 

3.2. Anti-cancer activities 

2-Chloro-3-{5-[(2-substituted-1-H-
benzimidazol-1-yl)methyl]-1,3,4-oxadiazol-2-
yl}quinoline 29 and 2-chloro-3-(5-substituted-

phenyl-1,3,4-oxadiazol-2-yl)quinoline 30 
(Figure 20) were prepared [49] and screened 
for anti-cancer property against to 60 cancer cell 
line at a dose of 10−5 Molar on different broad 
cell lines.
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Figure 20. Family of 1,3,4-oxadiazoles exhibiting anti-cancer activity

Steroidal derivatives of 3b-[5′-mercapto-1,3,4-
oxadiazole-2-yl] methoxycholest-5-ene 31 
(Figure 21) were prepared and tested for anti-

cancer property over human leukemia (HL-60) 
cell line using MTT assay [50] and found IC50at 
17.

O

HN N
S

CH3

CH3
C8H17

31  
Figure 21. 

The 2-chloro-1,4-bis-(5-substituted-1,3,4-
oxadiazol-2pheylmethyleneoxy)phenylene 
derivative 32 was synthesized (Figure 22) and 
tested in vitro on NCI-60 cancer cell lines of 
various cancer types, as well as leukaemia, CNS, 

colon, melanoma, lung, renal prostate, ovarian, 
and breast cancer. Most cancer cell lines 
demonstrated substantial action against the 
molecules with R= 2,4-dicholoro C6H3OCH2 and 
4-ClC6H4NHCH2 [51].

 
Figure 22. 

As monastrol analogues, a novel series of 
dihydropyrimidine derivatives containing the 
1,3,4-oxadiazole moiety was created. 4-(3-
Chlorophenyl)-2-(((5-(4-chlorophenyl)-1,3,4-
oxadiazol-2-yl)methyl)thio)-6-methyl-1,4-
dihydropyrimidine-5-carboxylateb 33 and ethyl 
2-(((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-
yl)methyl)thio)-4-(2,4-dichlorophenyl)-6-

methyl-1,4-dihydropyrimidine-5-carboxylate 
34 were discovered active among all [52]. 
MOLT-4 (IC50 80 nM) and leukaemia HL-60TB 
(IC50 56 nM) were the most sensitive cell lines 
and were found to be more potential than 
monastrol (IC50=215 and 147 nM, respectively) 
(Figure 23).
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Figure 23.

Kapoor et.al. [53] synthesized a series of 2-
(substituted phenyl)-5-(2-(2-(substituted 
phenyl)-1H-benzo[d]imidazol-1-yl) phenyl)-
1,3,4-oxadiazoles 35 (Figure 24) and tested for 

anti-tumor activity against breast cancer cell 
lines (MCF-7) by MTT assay. The substitutions 
with R1=4-OCH3, and R2=4-OCH3 compound 
exhibited excellent cytotoxic activity.

 
Figure 24.

3.3. Anti-inflammatory activities 

1-{5-(4-Hydroxy-phenyl)-3-[5-(1H-indol-3-
ylmethyl)-4H-pyrazol-3-ylamino]-4,5-dihydro-

pyrazol-1-yl}-ethanone (R=p-OHC6H5) 36 was 
synthesized [54] and tested, and also their anti-
inflammatory activity with inhibition at a dose at 
50 mg kg-1 (Figure 25).

 
Figure 25. Family of 1,3,4-oxadiazoles exhibiting anti-inflammatory activity

5-Pyridyl-1,3,4-oxadiazole-2-thiol 37 and S-
benzoyl-5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol 
[55] 38 analogs were synthesized and evaluated 

for anti-inflammatory activity against 
indomethacin as standard with 40.7 and 39.2% 
inhibitions, respectively (Figure 26).

 
Figure 26.
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A series of 2,5-disubstituted-1,3,4-oxadiazole 
compounds, 5-(2,4,6-trichlorophenoxy methyl)-
2-mercapto-1,3,4-oxadiazole 39, 2,4-
dichlorophenyl- 5-(2,4,6-trichlorophenoxy 
methyl)-1,3,4-oxadiazole 40, and 1-(4-

isobutylphenyl) ethyl-5-(2,4,6-
trichlorophenoxy methyl)-1,3,4-oxadiazole 41 
were synthesized [56] and tested in vivo for their 
anti-inflammatory activity (Figure 27).

 
Figure 27.

3.4. Anti-tubercular activities  

Aryl sulfonamido-5-[2′-(benzimidazol-2″-yl)]-
1,3,4-oxadiazoles 42 and 2-benzoylamino-5-[2′-
(benzimidazol-2″-yl)phenyl]-1,3,4-oxadiazoles 

43 were prepared (Figure 28) and studied for 
anti-tubercular property against H37Rv in 
BACTEC 12B medium using BACTEC 460 
radiometric system [57].

 
Figure 28. Family of 1,3,4-oxadiazoles exhibiting anti-tubercular activity

A new sequence of substituted sulfanyl-1-[5-
substituted-1,3,4-oxadiazol-2-yl]-derivatives of 
1H-benzimidazole 46 were created with the goal 
of discovering a more effective anti-
inflammatory and antitubercular property. 
Middle brook 7H9 agar media was used to 
screen all of the compounds for anti-tubercular 
activity against the H37Rv strain. The anti-
tubercular action of compounds containing 

R=phenyl, 2-hydroxyphenyl, and 4-aminophenyl 
has been found good [58] (Figure 29). 

The novel series of 2,5-disubstituted-1,3,4-
oxadiazoles 45 were produced and tested for 
anti-tubercular activity against the H37Rv strain 
using middle brook 7H9 agar media. Compounds 
with R with 4-aminophenyl and Ar with phenyl 
substituent indicated promising anti-tubercular 
activity (Figure 29).

 
Figure 29.

3.5 Molluscicidal activities Nizamuddin and Singh presented the 
preparation of 2-phenyl-spiro(cyclohexane)-
1′,5-[1,3,4] oxadiazolo[3,2-c]thiazoline 
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analogue 47 (Figure 30) tested for 
molluscicidal activity against Lymnaea 

acuminata and found greater activity among 
others [59].

 

Figure 30. Family of 1,3,4-oxadiazoles exhibiting anti-molluscicidal activity

3.6 Hypoglycemic activities  

Hussain and Jamali synthesized [60] 2-
arylamino-5-[p-(3-aryl-4-oxoquinazoline-2-yl 

methyl amino)phenyl]1,3,4-oxadiazoles 48 and 
evaluated for hypoglycemic property (Figure 
31).

N

N

O

H
N

O
N

N

HN
R1

R

R=-OCH3, p-NO2, CH3 R1=CH3, OCH3, Cl, Br

48  
Figure 31. Family of 1,3,4-oxadiazoles exhibiting anti-hypoglycemic activity

5-alkyl-2-aryl sulfonamido-l,3,4-oxadiazoles 
49 derivatives were synthesized and tested for 
hypoglycemic activity. Among that, R= p-amino 

group were found as a prerequisite for excellent 
hypoglycemic property (Figure 32).

 
Figure 32.

3.7 Anticonvulsant activities 

Almasirad et al. [61] presented the preparation 
of a sequence of novel 2-substituted-5-[2-(2-
fluorophenoxy)phenyl]-1,3,4-oxadiazoles 50 
and the evaluation of their anticonvulsant 
properties. In both the PTZ and the maximal 
electroshock seizure (MES) models, the 

compound containing an -NH2 substituent at the 
2nd position on oxadiazole ring exhibits the 
highest anticonvulsant effect (Figure 33). In a 
PTZ test, the effect was blocked by flumazenil, a 
benzodiazepine antagonist, indicating that 
benzodiazepine receptors are involved in this 
impact [62].
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Figure 33. Family of 1,3,4-oxadiazoles exhibiting anti-convulsant activity

2-Arylsulphonamido-5-(α-methyl-4-
isobutylbenzyl)-1,3,4-oxadiazoles 51 and 
substituted benzamido-5-(α-methyl-4-
isobutylbenzyl)-1,3,4-oxadiazoles 52 were 

synthesized and screened for anticonvulsant 
property by MES and subcutaneous 
pentylenetetrazole (scPTZ) approaches [63].

N

O

N
NHSO2R

CH3

CH3H3C

N

O

N
NHCOR

CH3

CH3H3C

51 52  
Figure 34.

The anticonvulsant property of a sequence of 2-
substituted-5-(2-benzyloxyphenyl)-1,3,4-
oxadiazoles 53 was investigated. In both the PTZ 
and MES designs, the molecule with an amino 
substituent at the 2nd position of the oxadiazole 
ring and a fluoro substituent at the p- position of 

the benzyloxy group exhibited encouraging 
results (Figure 35). The activity was stopped 
when the fluoro substituent was replaced with a 
bigger electron-withdrawing group, such as 
chlorine.

 
Figure 35.

Anticonvulsant drugs have been devised and 
synthesized using a sequence of novel 2-
substituted-5-(2-benzylthiophenyl)-1,3,4-
oxadiazoles 54. The insertion of an amino group 
at the 2nd position of 1,3,4-oxadiazole ring and a 

fluoro substituent at the p-position of the 
benzylthio group provided the best 
anticonvulsant action in electroshock and 
pentylenetetrazole-induced convulsion tests 
[64] (Figure 36).
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Figure 36. 

3.8 Anti-protozoal activities 

New 5-(3,5-disubstituted-1H-indol-2-yl)-1,3,4-
oxadiazole-2(3H)-thione and 2-[5-(3,5-
disubstituted-1H-indol-2-yl)-2-thioxo-1,3,4-
oxadiazol-3(2H)-yl]acetohydrazides were 
synthesized and evaluated for potential anti-
helmintic property on Pheratimaposthuma using 

piperazine citrate 2 mg ml-1 as standard. 3-
Ethyl-5-(5-methyl-3-phenyl-1H-indol-2-yl)-
1,3,4-oxadiazole-2(3H)-thione 55 and 3-benzyl-
5-(5-methyl-3-phenyl-1H-indol-2-yl)-1,3,4-
oxadiazole-2(3H)-thione 56 were two tested 
molecules with better activity among the most 
common compounds in this series [65] (Figure 
37).

 
Figure 37. Family of 1,3,4-oxadiazoles exhibiting anti-protozoal activity

4. Conclusions  

In this review, the authors successfully 
described the significant syntheses of 1,3,4-
oxadiazole derivatives that have been published 
during the last decade. Oxadiazole derivatives 
reveal a wide range of biological activity and 
drug discovery programs. We believe oxadiazole 
research is still in the early stage, and huge 
potential remains unexploited in many fields, 
further study will open a new era of scientific 
development particularly novel reactions and 
applications in organic synthesis methodologies 
by creative chemists will certainly allow the 
access to challenging targets in an extremely 
efficient manner. 
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