Scopus     h-index: 24

Document Type : Focus Review Article


1 Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

2 Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA


This work presents a concise review on the homogeneous ruthenium single-, two, and three-center complexes employed in water oxidation catalysis. The design of efficient and robust water oxidation catalysts has much to benefit from an improved understanding of the mechanism. A strong perspective is established on the progress made so far on the water oxidation catalysis through experimental and complementary computational efforts to understand the water oxidation reaction. The general mechanisms postulated so far are including the acid-base mechanism, the water nucleophilic attack and the direct coupling mechanistic approaches. These proposals are briefly discussed and reports featuring each instance are captured. From experimental perspectives, considerable efforts have been made in optimizing catalyst figures of merit (overpotentials, turnover numbers, and operating conditions) in single-center Ru systems, their efficiencies in most cases are not realistic enough to be adopted in commercial scale. While homogeneous multinuclear ruthenium complexes exist in the literature, few studies have been devoted towards understanding their mechanisms.  Further studies in this respect are crucial as they may serve as the golden gate towards understanding (probably) the mechanisms involved in the nature’s photosystem II which is the upper-bound catalyst for water oxidation. The present experimental and computational progress made in single- and two-center homogeneous catalytic systems provide a useful blueprint to build on higher homologous series for efficient water oxidation catalysis.


[1] Hirahara, M., Nagai, S., Takahashi, K., Saito, K., Yui, T., & Yagi, M. (2015). New Series of Dinuclear Ruthenium (II) Complexes Synthesized Using Photoisomerization for Efficient Water Oxidation Catalysis. Inorganic Chemistry54(15), 7627-7635.
[2] Concepcion, J. J., Jurss, J. W., Norris, M. R., Chen, Z., Templeton, J. L., & Meyer, T. J. (2010). Catalytic water oxidation by single-site ruthenium catalysts. Inorganic Chemistry49(4), 1277-1279.
[3] Zhang, Q., & Guan, J. (2019). Mono‐/Multinuclear Water Oxidation Catalysts. ChemSusChem12(14), 3209-3235.
[4] Herrero, C., Quaranta, A., Ricoux, R., Trehoux, A., Mahammed, A., Gross, Z., & Mahy, J. P. (2016). Oxidation catalysis via visible-light water activation of a [Ru (bpy)3]2+ chromophore BSA–metallocorrole couple. Dalton Transactions45(2), 706-710.
[5] Garrido-Barros, P., Gimbert-Suriñach, C., Matheu, R., Sala, X., & Llobet, A. (2017). How to make an efficient and robust molecular catalyst for water oxidation. Chemical Society Reviews46(20), 6088-6098.
[6] Materna, K. L., Crabtree, R. H., & Brudvig, G. W. (2017). Anchoring groups for photocatalytic water oxidation on metal oxide surfaces. Chemical Society Reviews46(20), 6099-6110.
[7] Muckerman, J. T., Polyansky, D. E., Wada, T., Tanaka, K., & Fujita, E. (2008). Water oxidation by a ruthenium complex with noninnocent quinone ligands: possible formation of an O− O bond at a low oxidation state of the metal. Inorganic chemistry47(6), 1787-1802.
[8] Gil‐Sepulcre, M., Böhler, M., Schilling, M., Bozoglian, F., Bachmann, C., Scherrer, D., & Bofill, R. (2017). Ruthenium Water Oxidation Catalysts Based on Pentapyridyl Ligands. ChemSusChem10(22), 4517-4525.
[9] Scherrer, D., Schilling, M., Luber, S., Fox, T., Spingler, B., Alberto, R., & Richmond, C. J. (2016). Ruthenium water oxidation catalysts containing the non-planar tetradentate ligand, biisoquinoline dicarboxylic acid (biqaH2). Dalton Transactions45(48), 19361-19367.
[10] Villarreal, W., Colina-Vegas, L., Visbal, G., Corona, O., Corrêa, R. S., Ellena, J., & Navarro, M. (2017). Copper (I)–Phosphine Polypyridyl Complexes: Synthesis, Characterization, DNA/HSA Binding Study, and Antiproliferative Activity. Inorganic Chemistry56(7), 3781-3793.
[11] Shaffer, D. W., Xie, Y., Szalda, D. J., & Concepcion, J. J. (2016). Manipulating the rate-limiting step in water oxidation catalysis by ruthenium bipyridine–dicarboxylate complexes. Inorganic Chemistry55(22), 12024-12035.
[12] Debus, R. J. (1992). The manganese and calcium ions of photosynthetic oxygen evolution. Biochimica et Biophysica Acta (BBA)-Bioenergetics1102(3), 269-352.
[13] Manchanda, R., Brudvig, G. W., & Crabtree, R. H. (1995). High-valent oxomanganese clusters: structural and mechanistic work relevant to the oxygen-evolving center in photosystem II. Coordination Chemistry Reviews144, 1-38.
[14] Schulze, M., Kunz, V., Frischmann, P. D., & Würthner, F. (2016). A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II. Nature chemistry8(6), 576.
[15] Rüttinger, W., & Dismukes, G. C. (1997). Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chemical Reviews97(1), 1-24.
[16] Barber, J. (2008). Crystal structure of the oxygen-evolving complex of photosystem II. Inorganic Chemistry47(6), 1700-1710.
[17] Sproviero, E. M., Gascón, J. A., McEvoy, J. P., Brudvig, G. W., & Batista, V. S. (2008). A model of the oxygen-evolving center of photosystem II predicted by structural refinement based on EXAFS simulations. Journal of the American Chemical Society130(21), 6728-6730.
[18] Sproviero, E. M., Gascón, J. A., McEvoy, J. P., Brudvig, G. W., & Batista, V. S. (2008). Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. Journal of the American Chemical Society130(11), 3428-3442.
[19] Opoku, E., Tia, R., & Adei, E. (2016). [3 + 2] Versus [2 + 2] addition: a density functional theory study on the mechanistic aspects of transition metal-assisted formation of 1, 2-dinitrosoalkanes. Journal of Chemistry2016.
[20] Borketey, J. B., Opoku, E., Tia, R., & Adei, E. (2020). The mechanisms of gallium-catalysed skeletal rearrangement of 1, 6-enynes–Insights from quantum mechanical computations. Journal of Molecular Graphics and Modelling94, 107476.
[21] Opoku, E., Tia, R., & Adei, E. (2019). Quantum chemical studies on the mechanistic aspects of tandem sequential cycloaddition reactions of cyclooctatetraene with ester and nitrones. Journal of Molecular Graphics and Modelling92, 17-31.
[22] Opoku, E., Arhin, G., Pipim, G. B., Adams, A. H., Tia, R., & Adei, E. (2020). Site-, enantio-and stereo-selectivities of the 1, 3-dipolar cycloaddition reactions of oxanorbornadiene with C, N-disubstituted nitrones and dimethyl nitrilimines: a DFT mechanistic study. Theoretical Chemistry Accounts139(1), 1-15.
[23] Opoku, E., Baffour Pipim, G., Tia, R., & Adei, E. (2020). Mechanistic study of the tandem intramolecular (4 + 2)/intermolecular (3 + 2) cycloaddition reactions for the formation of polyaza‐and polyisoxazolidine‐steroids. Journal of Heterocyclic Chemistry57(4), 1748-1758.
[24] Pipim, G. B., Opoku, E., Tia, R., & Adei, E. (2020). Peri-, Chemo-, Regio-, Stereo-and Enantio-Selectivities of 1, 3-dipolar cycloaddition reaction of C, N-Disubstituted nitrones with disubstituted 4-methylene-1, 3-oxazol-5 (4H)-one: A quantum mechanical study. Journal of Molecular Graphics and Modelling97, 107542.
[25] Opoku, E., Tia, R., & Adei, E. (2019). DFT mechanistic study on tandem sequential [4+ 2]/[3+ 2] addition reaction of cyclooctatetraene with functionalized acetylenes and nitrile imines. Journal of Physical Organic Chemistry32(10), e3992.
[26] Opoku, E., Tia, R., & Adei, E. (2019). Computational studies on [4 + 2]/[3 + 2] tandem sequential cycloaddition reactions of functionalized acetylenes with cyclopentadiene and diazoalkane for the formation of norbornene pyrazolines. Journal of molecular Modeling25(6), 168.
[27] Stracke, J. J., & Finke, R. G. (2014). Water Oxidation Catalysis Beginning with Co4 (H2O)2(PW9O34) 210–. When Driven by the Chemical Oxidant Ruthenium (III) tris (2, 2′-bipyridine): Stoichiometry, Kinetic, and Mechanistic Studies en Route to Identifying the True Catalyst. ACS Catalysis4(1), 79-89.
[28] Liao, R. Z., & Siegbahn, P. E. (2017). Quantum chemical modeling of homogeneous water oxidation catalysis. ChemSusChem10(22), 4236-4263.
[29] Meyer, T. J., Sheridan, M. V., & Sherman, B. D. (2017). Mechanisms of molecular water oxidation in solution and on oxide surfaces. Chemical Society Reviews46(20), 6148-6169.
[30] Liu, Q., Wu, L., Chen, M., Guo, Y., Xie, T., & Wang, P. (2019). Aromatic TpyRu2+(L)2Cl derivatives as water oxidation catalysts (Tpy= 2, 2′: 6′, 2 ″-terpyridine, Ru= ruthenium, L= pyridine or isoquinoline). Catalysis Communications122, 38-42.
[31] Matheu, R., Ertem, M. Z., Gimbert-Suriñach, C., Sala, X., & Llobet, A. (2019). Seven coordinated molecular ruthenium–water oxidation catalysts: a coordination chemistry journey: focus review. Chemical Reviews119(6), 3453-3471.
[32] Brimblecombe, R., Swiegers, G. F., Dismukes, G. C., & Spiccia, L. (2008). Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angewandte Chemie International Edition47(38), 7335-7338.
[33] Kanan, M. W., & Nocera, D. G. (2008). In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+Science321(5892), 1072-1075.
[34] Yi, Z., Ye, J., Kikugawa, N., Kako, T., Ouyang, S., Stuart-Williams, H., & Liu, Y. (2010). An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature materials9(7), 559-564.
[35] Shaffer, D. W., Xie, Y., & Concepcion, J. J. (2017). O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling. Chemical Society Reviews46(20), 6170-6193.
[36] Tong, L., & Thummel, R. P. (2016). Mononuclear ruthenium polypyridine complexes that catalyze water oxidation. Chemical Science7(11), 6591-6603.
[37] Gersten, S. W., Samuels, G. J., & Meyer, T. J. (1982). Catalytic oxidation of water by an oxo-bridged ruthenium dimer. Journal of the American Chemical Society104(14), 4029-4030.
[38] Wang, D., Marquard, S. L., Troian-Gautier, L., Sheridan, M. V., Sherman, B. D., Wang, Y., & Meyer, T. J. (2018). Interfacial deposition of Ru (II) bipyridine-dicarboxylate complexes by ligand substitution for applications in water oxidation catalysis. Journal of the American Chemical Society140(2), 719-726.
[39] Michaelos, T. K., Shopov, D. Y., Sinha, S. B., Sharninghausen, L. S., Fisher, K. J., Lant, H. M., ... & Brudvig, G. W. (2017). A pyridine alkoxide chelate ligand that promotes both unusually high oxidation states and water-oxidation catalysis. Accounts of Chemical Research50(4), 952-959.
[40] Wang, L. P., Wu, Q., & Van Voorhis, T. (2010). Acid− Base Mechanism for Ruthenium Water Oxidation Catalysts. Inorganic Chemistry49(10), 4543-4553.
[41] Xie, Y., Shaffer, D. W., & Concepcion, J. J. (2018). O–O radical coupling: from detailed mechanistic understanding to enhanced water oxidation catalysis. Inorganic Chemistry57(17), 10533-10542.
[42] Kunz, V., Schulze, M., Schmidt, D., & Würthner, F. (2017). Trinuclear ruthenium macrocycles: toward supramolecular water oxidation catalysis in pure water. ACS Energy Letters2(2), 288-293.
[43] Sala, X., Ertem, M. Z., Vigara, L., Todorova, T. K., Chen, W., Rocha, R. C., & Llobet, A. (2010). The cis‐[RuII(bpy)2(H2O)2]2+. Water‐Oxidation Catalyst Revisited. Angewandte Chemie International Edition49(42), 7745-7747.
[44] Codolà, Z., Gamba, I., Acuña-Parés, F., Casadevall, C., Clémancey, M., Latour, J. M.,  & Costas, M. (2018). Design of iron coordination complexes as highly active homogenous water oxidation catalysts by deuteration of oxidation-sensitive sites. Journal of the American Chemical Society141(1), 323-333.
[45] Kärkäs, M. D., Li, Y. Y., Siegbahn, P. E., Liao, R. Z., & Åkermark, B. (2018). Metal–Ligand Cooperation in Single-Site Ruthenium Water Oxidation Catalysts: A Combined Experimental and Quantum Chemical Approach. Inorganic Chemistry57(17), 10881-10895.
[46] Kärkäs, M. D., Åkermark, T., Johnston, E. V., Karim, S. R., Laine, T. M., Lee, B. L., ... & Åkermark, B. (2012). Water Oxidation by Single‐Site Ruthenium Complexes: Using Ligands as Redox and Proton Transfer Mediators. Angewandte Chemie International Edition51(46), 11589-11593.
[47] Kärkäs, M. D., & Åkermark, B. (2016). Catalytic Water Oxidation by Ruthenium Complexes Containing Negatively Charged Ligand Frameworks. The Chemical Record16(2), 940-963.
[48] Peloquin, J. M., Campbell, K. A., Randall, D. W., Evanchik, M. A., Pecoraro, V. L., Armstrong, W. H., & Britt, R. D. (2000). 55Mn ENDOR of the S2-state multiline EPR signal of photosystem II: implications on the structure of the tetranuclear Mn cluster. Journal of the American Chemical Society122(44), 10926-10942.
[49] Fierer, N., Hamady, M., Lauber, C. L., & Knight, R. (2008). The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences105(46), 17994-17999.
[50] Romain, S., Bozoglian, F., Sala, X., & Llobet, A. (2009). Oxygen−oxygen bond formation by the Ru-Hbpp water oxidation catalyst occurs solely via an intramolecular reaction pathway. Journal of the American Chemical Society131(8), 2768-2769.
[51] Lay, P. A., & Sasse, W. H. (1985). Mechanism of the water-mediated reduction of tris (2, 2'-bipyridine-N, N') iron (III),-ruthenium (III), and-osmium (III) complexes. Inorganic Chemistry24(26), 4707-4710.
[52] Tazuke, S., Kurihara, S., Yamaguchi, H., & Ikeda, T. (1987). Photochemically triggered physical amplification of photoresponsiveness. Journal of Physical Chemistry91(2), 249-251.
[53] Wada, T., Tsuge, K., & Tanaka, K. (2001). Syntheses and redox properties of bis (hydroxoruthenium) complexes with quinone and bipyridine ligands. Water-oxidation catalysis. Inorganic Chemistry40(2), 329-337.
[54] Chen, Z., Concepcion, J. J., Hu, X., Yang, W., Hoertz, P. G., & Meyer, T. J. (2010). Concerted O atom–proton transfer in the O—O bond forming step in water oxidation. Proceedings of the National Academy of Sciences107(16), 7225-7229.
[55] Tamaki, Y., Vannucci, A. K., Dares, C. J., Binstead, R. A., & Meyer, T. J. (2014). One-electron activation of water oxidation catalysis. Journal of the American Chemical Society136(19), 6854-6857.
[56] Mulyana, Y., Keene, F. R., & Spiccia, L. (2014). Cooperative effects in homogenous water oxidation catalysis by mononuclear ruthenium complexes. Dalton Transactions43(18), 6819-6827.
[57] Hirahara, M., Ertem, M. Z., Komi, M., Yamazaki, H., Cramer, C. J., & Yagi, M. (2013). Mechanisms of photoisomerization and water-oxidation catalysis of mononuclear ruthenium (II) monoaquo complexes. Inorganic Chemistry52(11), 6354-6364.
[58] Wasylenko, D. J., Palmer, R. D., & Berlinguette, C. P. (2013). Homogeneous water oxidation catalysts containing a single metal site. Chemical Communications49(3), 218-227.
[59] Concepcion, J. J., Tsai, M. K., Muckerman, J. T., & Meyer, T. J. (2010). Mechanism of water oxidation by single-site ruthenium complex catalysts. Journal of the American Chemical Society132(5), 1545-1557.
[60] Duan, L., Xu, Y., Gorlov, M., Tong, L., Andersson, S., & Sun, L. (2010). Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charged tridentate ligand. Chemistry–A European Journal16(15), 4659-4668.
[61] Wang, L., Duan, L., Wang, Y., Ahlquist, M. S., & Sun, L. (2014). Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes. Chemical Communications50(85), 12947-12950.
[62] Wang, L., Fan, K., Chen, H., Daniel, Q., Philippe, B., Rensmo, H., & Sun, L. (2017). Towards efficient and robust anodes for water splitting: Immobilization of Ru catalysts on carbon electrode and hematite by in situ polymerization. Catalysis Today290, 73-77.
[63] Yu, F., Poole III, D., Mathew, S., Yan, N., Hessels, J., Orth, N., & Reek, J. N. (2018). Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self‐Assembled Nanospheres. Angewandte Chemie130(35), 11417-11421.
[64] Tong, L., Duan, L., Xu, Y., Privalov, T., & Sun, L. (2011). Structural modifications of mononuclear ruthenium complexes: a combined experimental and theoretical study on the kinetics of ruthenium‐catalyzed water oxidation. Angewandte Chemie International Edition50(2), 445-449.
[65] Yamazaki, H., Hakamata, T., Komi, M., & Yagi, M. (2011). Stoichiometric photoisomerization of mononuclear ruthenium (II) monoaquo complexes controlling redox properties and water oxidation catalysis. Journal of the American Chemical Society133(23), 8846-8849.
[66] Tong, L., Wang, Y., Duan, L., Xu, Y., Cheng, X., Fischer, A., ... & Sun, L. (2012). Water oxidation catalysis: influence of anionic ligands upon the redox properties and catalytic performance of mononuclear ruthenium complexes. Inorganic Chemistry51(6), 3388-3398.
[67] Wasylenko, D. J., Ganesamoorthy, C., Koivisto, B. D., Henderson, M. A., & Berlinguette, C. P. (2010). Insight into water oxidation by mononuclear polypyridyl Ru catalysts. Inorganic Chemistry49(5), 2202-2209.
[68] Fan, T., Duan, L., Huang, P., Chen, H., Daniel, Q., Ahlquist, M. S., & Sun, L. (2017). The Ru-tpc water oxidation catalyst and beyond: water nucleophilic attack pathway versus radical coupling pathway. ACS Catalysis7(4), 2956-2966.
[69] Murakami, M., Hong, D., Suenobu, T., Yamaguchi, S., Ogura, T., & Fukuzumi, S. (2011). Catalytic mechanism of water oxidation with single-site ruthenium–heteropolytungstate complexes. Journal of the American Chemical Society133(30), 11605-11613.
[70] Concepcion, J. J., Jurss, J. W., Templeton, J. L., & Meyer, T. J. (2008). One site is enough. Catalytic water oxidation by [Ru(tpy)(bpm)(OH2)]2+ and [Ru(tpy)(bpz)(OH2)]2+Journal of the American Chemical Society130(49), 16462-16463.
[71] Nastasi, F., Santoro, A., Serroni, S., Campagna, S., Kaveevivitchai, N., & Thummel, R. P. (2019). Early photophysical events of a ruthenium (II) molecular dyad capable of performing photochemical water oxidation and of its model compounds. Photochemical & Photobiological Sciences18(9), 2164-2173.
[72] Badiei, Y. M., Xie, Y., Renderos, G., Concepcion, J. J., Szalda, D., Guevara, J., & Hankins, M. (2019). Rapid identification of homogeneous O2 evolution catalysts and comparative studies of Ru (II)-carboxamides vs. Ru (II)-carboxylates in water-oxidation. Journal of Catalysis369, 10-20.
[73] Yang, J., An, J., Tong, L., Long, B., Fan, T., & Duan, L. (2019). Sulfur Coordination Effects on the Stability and Activity of a Ruthenium-Based Water Oxidation Catalyst. Inorganic Chemistry58(5), 3137-3144.
[74] Yang, X., & Baik, M. H. (2008). The Mechanism of Water Oxidation Catalysis Promoted by [tpyRu(IV)=O]2L3+: A Computational Study. Journal of the American Chemical Society130(48), 16231-16240.
[75] Bozoglian, F., Romain, S., Ertem, M. Z., Todorova, T. K., Sens, C., Mola, J., & Cramer, C. J. (2009). The Ru− Hbpp water oxidation catalyst. Journal of the American Chemical Society131(42), 15176-15187.
[76] Gilbert, J. A., Eggleston, D. S., Murphy Jr, W. R., Geselowitz, D. A., Gersten, S. W., Hodgson, D. J., & Meyer, T. J. (1985). Structure and redox properties of the water-oxidation catalyst [(bpy)2(OH2) RuORu (OH2)(bpy)2]4+Journal of the American Chemical Society107(13), 3855-3864.
[77] Schneider, J., Bangle, R. E., Swords, W. B., Troian-Gautier, L., & Meyer, G. J. (2019). Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts. Journal of the American Chemical Society141(25), 9758-9763.
[78] Concepcion, J. J., Jurss, J. W., Hoertz, P. G., & Meyer, T. J. (2009). Catalytic and Surface‐Electrocatalytic Water Oxidation by Redox Mediator–Catalyst Assemblies. Angewandte Chemie International Edition48(50), 9473-9476.
[79] Vatsa, A., & Padhi, S. K. (2020). Catalytic Water Oxidation by a Single Site [Ru(Fc-tpy)(bpy)OH2]2+ Complex and it’s Mechanistic Study. Inorganica Chimica Acta, 119444.
[80] Tsubonouchi, Y., Honta, J., Sato, T., Mohamed, E., Zahran, Z., Saito, K., & Yagi, M. (2020). Multi-Potential-Step Chronocoulospectrometry for Electrocatalytic Water Oxidation by a Mononuclear Ruthenium Aqua Complex Immobilized on a Mesoporous ITO Electrode. Dalton Transactions.
[81] Shi, J., Guo, Y. H., Xie, F., Chen, Q. F., & Zhang, M. T. (2020). Redox‐Active Ligand Assisted Catalytic Water Oxidation by a RuIV= O Intermediate. Angewandte Chemie132(10), 4029-4037.
[82] Pineda-Galvan, Y., Ravari, A. K., Shmakov, S., Lifshits, L., Kaveevivitchai, N., Thummel, R., & Pushkar, Y. (2019). Detection of the site protected 7-coordinate RuV=O species and its chemical reactivity to enable catalytic water oxidation. Journal of catalysis375, 1-7.
[83] Karkas, M. D., Johnston, E. V., Verho, O., & Åkermark, B. (2014). Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation. Accounts of Chemical Research47(1), 100-111.
[84] Liu, Q., Lan, Y., Liu, J., Li, G., Wu, Y. D., & Lei, A. (2009). Revealing a second transmetalation step in the Negishi coupling and its competition with reductive elimination: improvement in the interpretation of the mechanism of biaryl syntheses. Journal of the American Chemical Society131(29), 10201-10210.
[85] Schoenebeck, F., & Houk, K. N. (2010). Ligand-controlled regioselectivity in palladium-catalyzed cross coupling reactions. Journal of the American Chemical Society132(8), 2496-2497.
[86] Liu, B., Gao, M., Dang, L., Zhao, H., Marder, T. B., & Lin, Z. (2012). DFT studies on the mechanisms of the platinum-catalyzed diboration of acyclic α, β-unsaturated carbonyl compounds. Organometallics31(8), 3410-3425.
[87] Zhou, Q., & Li, Y. (2015). The real role of N-heterocyclic carbene in reductive functionalization of CO2: an alternative understanding from density functional theory study. Journal of the American Chemical Society137(32), 10182-10189.
[88] Vereshchuk, N., Matheu, R., Benet-Buchholz, J., Pipelier, M., Lebreton, J., Dubreuil, D.,  & Llobet, A. (2020). Second Coordination Sphere Effects in an Evolved Ru Complex Based on Highly Adaptable Ligand Results in Rapid Water Oxidation Catalysis. Journal of the American Chemical Society142(11), 5068-5077.
[89] Kundu, A., Khan, S., Dey, S., Dutta, C., Anoop, A., & Mandal, S. (2019). Synthesis and Physicochemical Properties of Ruthenium (II) Complexes Having Pentadentate Scaffolds: Water Oxidation Activity and Deactivation Pathway. European Journal of Inorganic Chemistry2019(2), 164-177.
[90] Chen, Q., Zhou, Q., Li, T. T., Liu, R., Li, H., Guo, F., & Zheng, Y. Q. (2019). Covalent bonding photosensitizer–catalyst dyads of ruthenium-based complexes designed for enhanced visible-light-driven water oxidation performance. Transition Metal Chemistry44(4), 349-354.
[91] Volpe, A., Tubaro, C., Natali, M., Sartorel, A., Brudvig, G. W., & Bonchio, M. (2019). Light-Driven Water Oxidation with the Ir-blue Catalyst and the Ru (bpy)32+/S2O8 2– Cycle: Photogeneration of Active Dimers, Electron-Transfer Kinetics, and Light Synchronization for Oxygen Evolution with High Quantum Efficiency. Inorganic Chemistry58(24), 16537-16545.
[92] Matias, T. A., Rein, F. N., Rocha, R. C., Formiga, A. L. B., Toma, H. E., & Araki, K. (2019). Effects of a strong π-accepting ancillary ligand on the water oxidation activity of weakly coupled binuclear ruthenium catalysts. Dalton Transactions48(9), 3009-3017.
[93] Fukuzumi, S., Lee, Y. M., & Nam, W. (2019). Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions48(3), 779-798.
[94] Kap, Z., & Karadas, F. (2019). Visible light-driven water oxidation with a ruthenium sensitizer and a cobalt-based catalyst connected with a polymeric platform. Faraday Discussions215, 111-122.
[95] Kundu, A., Dey, S. K., Dey, S., Anoop, A., & Mandal, S. (2019). Mononuclear Ruthenium-Based Water Oxidation Catalyst Supported by Anionic, Redox-Non-Innocent Ligand: Heterometallic O–O Bond Formation via Radical Coupling Pathway. Inorganic Chemistry.
[96] Zhang, B., & Sun, L. (2019). Ru-bda: Unique molecular water-oxidation catalysts with distortion induced open site and negatively charged ligands. Journal of the American Chemical Society141(14), 5565-5580.
[97] Dzhabieva, Z. M., Shilov, G. V., Avdeeva, L. V., Dobrygin, V. V., Tkachenko, V. Y., & Dzhabiev, T. S. (2020). Biomimetic Water Oxidation Catalyzed by a Binuclear Ruthenium (IV) Nitrido-Chloride Complex with Lithium Counter-Cations. Biomimetics5(1), 3.
[98] Hurst, J. K. (2005). Water oxidation catalyzed by dimeric μ-oxo bridged ruthenium diimine complexes. Coordination Chemistry Reviews249(3-4), 313-328.
[99] Jiang, Y., Li, F., Zhang, B., Li, X., Wang, X., Huang, F., & Sun, L. (2013). Promoting the activity of catalysts for the oxidation of water with bridged dinuclear ruthenium complexes. Angewandte Chemie International Edition52(12), 3398-3401.
[100] Liu, X., & Wang, F. (2012). Transition metal complexes that catalyze oxygen formation from water: 1979–2010. Coordination Chemistry Reviews256(11-12), 1115-1136.
[101] Berardi, S., Francàs, L., Neudeck, S., Maji, S., Benet‐Buchholz, J., Meyer, F., & Llobet, A. (2015). Efficient Light‐Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes. ChemSusChem8(21), 3688-3696.
[102] Angeles-Boza, A. M., Ertem, M. Z., Sarma, R., Ibanez, C. H., Maji, S., Llobet, A., & Roth, J. P. (2014). Competitive oxygen-18 kinetic isotope effects expose O–O bond formation in water oxidation catalysis by monomeric and dimeric ruthenium complexes. Chemical Science5(3), 1141-1152.
[103] Kunz, V., Lindner, J. O., Schulze, M., Röhr, M. I., Schmidt, D., Mitrić, R., & Würthner, F. (2017). Cooperative water oxidation catalysis in a series of trinuclear metallosupramolecular ruthenium macrocycles. Energy & Environmental Science10(10), 2137-2153.
[104] Yu, W. B., He, Q. Y., Shi, H. T., Yuan, G., & Wei, X. (2015). Anion‐Directed Self‐Assembly of Two Half‐Sandwich Ruthenium‐Based Metallamacrocycles as Catalysts for Water Oxidation. Chemistry–An Asian Journal10(1), 239-246.
[105] Yu, W. B., He, Q. Y., Shi, H. T., & Wei, X. (2016). Heterogeneous catalysis of water oxidation supported by a novel metallamacrocycle. New Journal of Chemistry40(3), 2354-2361.
[106] Richmond, C. J., & Llobet, A. (2016). Incorporation of a ruthenium–bis (pyridine) pyrazolate (Ru–bpp) water oxidation catalyst in a hexametallic macrocycle. Catalysis Science & Technology6(17), 6697-6704.
[107] Kang, R., Yao, J., & Chen, H. (2013). Are DFT methods accurate in mononuclear ruthenium-catalyzed water oxidation? An ab initio assessment. Journal of Chemical Theory and Computation9(4), 1872-1879.
[108] Hedin, L., & Lundqvist, B. I. (1971). Explicit local exchange-correlation potentials. Journal of Physics C: Solid state physics4(14), 2064.
[109] Watabe, S., Tanahashi, Y., Hirahara, M., Yamazaki, H., Takahashi, K., Mohamed, E. A., & Yagi, M. (2019). Critical Hammett Electron-Donating Ability of Substituent Groups for Efficient Water Oxidation Catalysis by Mononuclear Ruthenium Aquo Complexes. Inorganic Chemistry58(19), 12716-12723.
[110] Kamdar, J. M., & Grotjahn, D. B. (2019). An Overview of Significant Achievements in Ruthenium-Based Molecular Water Oxidation Catalysis. Molecules24(3), 494.
[111] Xie, Y., Shaffer, D. W., Lewandowska‐Andralojc, A., Szalda, D. J., & Concepcion, J. J. (2016). Water oxidation by ruthenium complexes incorporating multifunctional bipyridyl diphosphonate ligands. Angewandte Chemie International Edition55(28), 8067-8071.
[112] Duffy, E. M., Marsh, B. M., Voss, J. M., & Garand, E. (2016). Characterization of the oxygen binding motif in a ruthenium water oxidation catalyst by vibrational spectroscopy. Angewandte Chemie International Edition55(12), 4079-4082.
[113] Dobson, J. C., & Meyer, T. J. (1988). Redox properties and ligand loss chemistry in aqua/hydroxo/oxo complexes derived from cis-and trans-[(bpy)2RuII(OH2)2]2+Inorganic Chemistry27(19), 3283-3291.
[114] Piccinin, S., & Fabris, S. (2015). Water oxidation by Ru-polyoxometalate catalysts: overpotential dependency on the number and charge of the metal centers. Inorganics3(3), 374-387.
[115] Boyer, J. L., Polyansky, D. E., Szalda, D. J., Zong, R., Thummel, R. P., & Fujita, E. (2011). Effects of a proximal base on water oxidation and proton reduction catalyzed by geometric isomers of [Ru (tpy)(pynap)(OH2)]2+Angewandte Chemie International Edition50(52), 12600-12604.
[116] Kärkäs, M. D., Liao, R. Z., Laine, T. M., Åkermark, T., Ghanem, S., Siegbahn, P. E., & Åkermark, B. (2016). Molecular ruthenium water oxidation catalysts carrying non-innocent ligands: mechanistic insight through structure–activity relationships and quantum chemical calculations. Catalysis Science & Technology6(5), 1306-1319.