Scopus     h-index: 24

Document Type : Short Review Article

Authors

1 Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India

2 Department of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, India

3 Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India

4 Department of Chemistry, Yashwantrao Chavan Maharashtra Open University, Nashik 422 222, Maharashtra, India

Abstract

Selenium nanoparticles (SeNPs) have attracted great attention in distinctive fields such as anticancer, antioxidant, catalysis, photocopiers, rectifiers, solar cells and xerography. This has ameliorated an immense development of different synthetic pathways for SeNPs production. At present, preparation of SeNPs depends largely on known chemical and physical methods that involved noxious chemicals and harsh reaction conditions which have been identified as a major disadvantage and potential threats to environment, health and its usage. Alternatively, biogenic synthesis has gained popularity as it is eco-benign, cheap, clean, safe and generates minimal waste. In this review article, we summarized recent literature on green synthesis of SeNPs using various plants and the different plant parts which have revolutionized technique of fabrication for their applications in various fields. Due to biocompatibility of SeNPs, it has found its stupendous applications in biomedical field. The protocol, characterization techniques and biosynthesis of SeNPs along with various recent applications have also been discussed.

Graphical Abstract

Plant Extract Assisted Eco-benevolent Synthesis of Selenium Nanoparticles- A Review on Plant Parts Involved, Characterization and Their Recent Applications

Keywords

[1] Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., ... & Varma, R. S. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chemical reviews116(6), 3722-3811.
[2] Ghosh Chaudhuri, R., & Paria, S. (2011). Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews, 112(4), 2373-2433.
[3] Ghotekar, S. (2019). A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 3(2), 187-200.
[4] Pagar, T., Ghotekar, S., Pagar, K., Pansambal, S., Oza, R. (2019). A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications. Journal of Chemical Reviews, 1(4), 260-270.
[5] Nikam, A., Pagar, T., Ghotekar, S., Pagar, K., Pansambal, S. (2019). A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. Journal of Chemical Reviews, 1(3), 154-163.
[6] Ghotekar, S. (2019). Plant extract mediated biosynthesis of Al2O3 nanoparticles- a review on plant parts involved, characterization and applications. Nanochem Res. 4(2):163-169.
[7] Ghotekar, S., Pansambal, S., Pawar, S. P., Pagar, T., Oza, R., Bangale, S. (2019). Biological activities of biogenically synthesized fluorescent silver nanoparticles using Acanthospermum hispidum leaves extract. SN Applied Sciences, 1(11), 1342.
[8] Aher, Y. B., Jain, G. H., Patil, G. E., Savale, A. R., Ghotekar, S. K., Pore, D. M., Pansambal, S. S.,  & Deshmukh, K. K. (2017). Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against diverse pathogens. International Journal of Molecular and Clinical Microbiology7(1), 776-786.
[9] Pagar, K., Ghotekar, S., Pagar, T., Nikam, A., Pansambal, S., Oza, R., Sanap, D., Dabhane, H. (2020). Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations. Asian Journal of Nanosciences and Materials3(1), 15-23.
[10] Kamble, D. R., Bangale, S. V., Ghotekar, S. K., Bamane, S. R. (2018). Efficient synthesis of CeVO4 nanoparticles using combustion route and their antibacterial activity. J. Nanostruct. 8(2), 144-151.
[11] Syedmoradi, L., Daneshpour, M., Alvandipour, M., Gomez, F. A., Hajghassem, H., & Omidfar, K. (2017). Point of care testing: The impact of nanotechnology. Biosensors and Bioelectronics87, 373-387.
[12] Ghotekar, S., Pansambal, S., Pagar, K., Pardeshi, O., Oza, R. (2018), Synthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity. Nanochem. Res. 3(2), 189-196.
[13] Savale, A., Ghotekar, S., Pansambal, S., Pardeshi, O. (2017), Green synthesis of fluorescent CdO nanoparticles using Leucaena leucocephala L. extract and their biological activities. J. Bacteriol. Mycol. Open Access. 5(5), 00148.
[14] Gebre, S. H., & Sendeku, M. G. (2019). New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN Applied Sciences1(8), 928.
[15] Ghotekar, S., Savale, A., Pansambal, S. (2018), Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities. J. Water Environ. Nanotechnol. 3(2), 95-105.
[16] Ghotekar, S. K., Vaidya, P. S., Pande, S. N., Pawar, S. P. (2015), Synthesis of silver nanoparticles by using 3-methyl pyrazol 5-one (chemical reduction method) and its characterizations. Int. J. Multidis. Res. and Deve.  2(5), 419-422.
[17] Ghotekar, S. K., Pande, S. N., Pansambal, S. S., Sanap, D. S., Mahale, K. M., Sonawane, B.(2015),Biosynthesis of silver nanoparticles using unripe fruit extract of Annona reticulata L. and its characterization. World J. Pharm. and Pharm. Sci.4(11), 1304-1312.
[18] Hoseinpour, V., & Ghaemi, N. (2018). Green synthesis of manganese nanoparticles: Applications and future perspective–A review. Journal of Photochemistry and Photobiology B: Biology189, 234-243.
[19] Pansambal, S., Deshmukh, K., Savale, A., Ghotekar, S., Pardeshi, O., Jain, G., Aher, Y., Pore D.  (2017), Phytosynthesis and biological activities of fluorescent CuO nanoparticles using Acanthospermum hispidum L. extract. J. Nanostruct. 7, 165-174.
[20] Pansambal, S., Ghotekar, S., Shewale, S., Deshmukh, K., Barde, N., Bardapurkar, P. (2019). Efficient synthesis of magnetically separable CoFe2O4@SiO2 nanoparticles and its potent catalytic applications for the synthesis of 5-aryl-1, 2, 4-triazolidine-3-thione derivatives. Journal of Water and Environmental Nanotechnology4(3), 174-186.
[21] Bangale, S., Ghotekar, S. (2019), Bio-fabrication of silver nanoparticles using Rosa chinensis L. extract for antibacterial activities. Int. J. Nano Dimens. 10(2), 217-224.
[22] Rajeshkumar, S., & Naik, P. (2018). Synthesis and biomedical applications of cerium oxide nanoparticles–a review. Biotechnology Reports17, 1-5.
[23] Pansambal, S., Gavande, S., Ghotekar, S., Oza, R., Deshmukh, K. (2017). Green Synthesis of CuO Nanoparticles using Ziziphus Mauritiana L. Extract and Its Characterizations. Int. J. Sci. Res. in Sci. and Tech. 3, 1388-1392.
[23] Pansambal, S., Ghotekar, S., Oza, R., Deshmukh, K. (2019), Biosynthesis of CuO nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves and their catalytic performance for the 5-aryl-1,2,4-triazolidine-3- thione derivatives synthesis. Int. J. Sci. Res. Sci. Tech., 5(4), 122-128.
[25] Zhu, M., Niu, G., & Tang, J. (2019). Elemental Se: fundamentals and its optoelectronic applications. Journal of Materials Chemistry C7(8), 2199-2206.
[26] Atkins, P., & Overton, T. (2010). Shriver and Atkins' inorganic chemistry. Oxford University Press, USA.
[27] Dwivedi, S., AlKhedhairy, A. A., Ahamed, M., & Musarrat, J. (2013). Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel Se-bioassay. PloS one8(3).
[28] Nath, S., Ghosh, S. K., Panigahi, S., Thundat, T., & Pal, T. (2004). Synthesis of selenium nanoparticle and its photocatalytic application for decolorization of methylene blue under UV irradiation. Langmuir20(18), 7880-7883.
[29] Panahi-Kalamuei, M., Salavati-Niasari, M., & Hosseinpour-Mashkani, S. M. (2014). Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles. Journal of alloys and compounds617, 627-632.
[30] Sinha, S., Kumar Chatterjee, S., Ghosh, J., & Kumar Meikap, A. (2013). Semiconducting selenium nanoparticles: Structural, electrical characterization, and formation of a back-to-back Schottky diode device. Journal of Applied Physics113(12), 123704.
[31] Chaudhary, S., & Mehta, S. K. (2014). Selenium nanomaterials: applications in electronics, catalysis and sensors. Journal of nanoscience and nanotechnology14(2), 1658-1674.
[32] Jain, R. (2014). Biogenic nanoparticles of elemental selenium: synthesis, characterization and relevance in wastewater treatment (Doctoral dissertation, Paris Est).
[33] Husen, A., & Siddiqi, K. S. (2014). Plants and microbes assisted selenium nanoparticles: characterization and application. Journal of nanobiotechnology12(1), 28.
[34] Liu, W., Li, X., Wong, Y. S., Zheng, W., Zhang, Y., Cao, W., & Chen, T. (2012). Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS nano6(8), 6578-6591.
[35] Torres, S. K., Campos, V. L., León, C. G., Rodríguez-Llamazares, S. M., Rojas, S. M., Gonzalez, M., ... & Mondaca, M. A. (2012). Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. Journal of Nanoparticle Research14(11), 1236.
[36] Shoeibi, S., & Mashreghi, M. (2017). Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology39, 135-139.
[37] Ghosh, S., Jagtap, S., More, P., Shete, U. J., Maheshwari, N. O., Rao, S. J., ... & Pal, J. K. (2015). Dioscorea bulbifera mediated synthesis of novel AucoreAgshell nanoparticles with potent antibiofilm and antileishmanial activity. Journal of Nanomaterials2015.
[38] Kazempour, Z. B., Yazdi, M. H., Rafii, F., & Shahverdi, A. R. (2013). Sub-inhibitory concentration of biogenic selenium nanoparticles lacks post antifungal effect for Aspergillus niger and Candida albicans and stimulates the growth of Aspergillus niger. Iranian journal of microbiology5(1), 81.
[39] Ramya, S., Shanmugasundaram, T., & Balagurunathan, R. (2015). Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. Journal of Trace Elements in Medicine and Biology32, 30-39.
[40] Srivastava, P., Braganca, J. M., & Kowshik, M. (2014). In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti‐proliferative properties against HeLa cell line. Biotechnology progress30(6), 1480-1487.
[41] Xia, Y., You, P., Xu, F., Liu, J., & Xing, F. (2015). Novel functionalized selenium nanoparticles for enhanced anti-hepatocarcinoma activity in vitro. Nanoscale research letters10(1), 1-14.
[42] Kumar, S., Tomar, M. S., & Acharya, A. (2015). Carboxylic group-induced synthesis and characterization of selenium nanoparticles and its anti-tumor potential on Dalton's lymphoma cells. Colloids and Surfaces B: Biointerfaces126, 546-552.
[43] El-Ghazaly, M. A., Fadel, N., Rashed, E., El-Batal, A., & Kenawy, S. A. (2017). Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Canadian journal of physiology and pharmacology95(2), 101-110.
[44] Zhao, S. J., Wang, D. H., Li, Y. W., Han, L., Xiao, X., Ma, M., ... & Ma, Y. (2017). A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects. International journal of nanomedicine12, 2143.
[45] Khurana, A., Tekula, S., Saifi, M. A., Venkatesh, P., & Godugu, C. (2019). Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy111, 802-812.
[46] Quintana, M., Haro-Poniatowski, E., Morales, J., & Batina, N. (2002). Synthesis of selenium nanoparticles by pulsed laser ablation. Applied surface science195(1-4), 175-186.
[47] Langi, B., Shah, C., Singh, K., Chaskar, A., Kumar, M., & Bajaj, P. N. (2010). Ionic liquid-induced synthesis of selenium nanoparticles. Materials Research Bulletin45(6), 668-671.
[48] Bai, Y., Qin, B., Zhou, Y., Wang, Y., Wang, Z., & Zheng, W. (2011). Preparation and antioxidant capacity of element selenium nanoparticles sol–gel compounds. Journal of nanoscience and nanotechnology11(6), 5012-5017.
[49] Panahi-Kalamuei, M., Salavati-Niasari, M., & Hosseinpour-Mashkani, S. M. (2014). Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles. Journal of alloys and compounds617, 627-632.
[50] Chen, Y. T., Zhang, W., Fan, Y. Q., Xu, X. Q., & Zhang, Z. X. (2006). Hydrothermal preparation of selenium nanorods. Materials chemistry and physics98(2-3), 191-194.
[51] Ahmad, M. (2016). Solvothermal synthesis of selenium nano and microspheres deposited on silicon surface by microwave-assisted method. Materials Research Express3(10), 105031.
[52] Panahi-Kalamuei, M., Mousavi-Kamazani, M., Salavati-Niasari, M., & Hosseinpour-Mashkani, S. M. (2015). A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application. Ultrasonics sonochemistry23, 246-256.
[53] Filippo, E., Manno, D., & Serra, A. (2010). Characterization and growth mechanism of selenium microtubes synthesized by a vapor phase deposition route. Crystal growth & design10(11), 4890-4897.
[54] Gates, B., Mayers, B., Cattle, B., & Xia, Y. (2002). Synthesis and characterization of uniform nanowires of trigonal selenium. Advanced Functional Materials12(3), 219-227.
[55] Wang, M. C., Zhang, X., Majidi, E., Nedelec, K., & Gates, B. D. (2010). Electrokinetic assembly of selenium and silver nanowires into macroscopic fibers. ACS nano4(5), 2607-2614.
[56] Zhu, Y., Qian, Y., Huang, H., & Zhang, M. (1996). Preparation of nanometer-size selenium powders of uniform particle size by γ-irradiation. Materials Letters28(1-3), 119-122.
[57] Anu, K., Singaravelu, G., Murugan, K., & Benelli, G. (2017). Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): biophysical characterization and cytotoxicity on vero cells. Journal of Cluster Science28(1), 551-563.
[58] Vyas, J., & Rana, S. (2017). Antioxidant activity and green synthesis of selenium nanoparticles using allium sativum extract. Int. J. Phytomedicine9, 634.
[59] Ezhuthupurakkal, P. B., Polaki, L. R., Suyavaran, A., Subastri, A., Sujatha, V., & Thirunavukkarasu, C. (2017). Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding. Materials Science and Engineering: C74, 597-608.
[60] Rana, J. V. S. (2018). Synthesis of selenium nanoparticles using Allium sativum extract and analysis of their antimicrobial property against gram positive bacteria.
[61] Vyas, J., & Rana, S. H. A. F. K. A. T. (2017). Antioxidant activity and biogenic synthesis of selenium nanoparticles using the leaf extract of aloe vera. Int. J. Curr. Pharm. Res9, 147-152.
[62] Fardsadegh, B., & Jafarizadeh-Malmiri, H. (2019). Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis8(1), 399-407.
[63] Zeebaree, S. Y. S., Zeebaree, A. Y. S., & Zebari, O. I. H. (2020). Diagnosis of the multiple effect of selenium nanoparticles decorated by Asteriscus graveolens components in inhibiting HepG2 cell proliferation. Sustainable Chemistry and Pharmacy15, 100210.
[64] Kapur, M., Soni, K., & Kohli, K. (2017). Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity. Adv. Tech. Biol. Med5(1), 2379-1764.
[65] Deepa, B., & Ganesan, V. (2015). Bioinspiredsynthesis of selenium nanoparticles using flowers of Catharanthus roseus (L.) G. Don. and Peltophorum pterocarpum (DC.) Backer ex Heyne–a comparison. Int J Chem Technol Res7, 725-733.
[66] Sasidharan, S., Sowmiya, R., & Balakrishnaraja, R. (2014). Biosynthesis of selenium nanoparticles using citrus reticulata peel extract. World J. Pharm. Res4, 1322-1330.
[67] Sowndarya, P., Ramkumar, G., & Shivakumar, M. S. (2017). Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artificial cells, nanomedicine, and biotechnology45(8), 1490-1495.
[68] Kokila, K., Elavarasan, N., & Sujatha, V. (2017). Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New Journal of Chemistry41(15), 7481-7490
[69] Lokanadhan, G., Dass, R. S., & Kalagatur, N. K. (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Frontiers in microbiology10, 931.
[70] Ramamurthy, C. H., Sampath, K. S., Arunkumar, P., Kumar, M. S., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. (2013). Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and biosystems engineering36(8), 1131-1139.
[71] Tripathi, R. M., Hameed, P., Rao, R. P., Shrivastava, N., Mittal, J., & Mohapatra, S. (2020). Biosynthesis of Highly Stable Fluorescent Selenium Nanoparticles and the Evaluation of Their Photocatalytic Degradation of Dye. BioNanoScience, 1-8.
[72] Satgurunathan, T., Bhavan, P. S., & Komathi, S. (2017). Green synthesis of selenium nanoparticles from sodium selenite using garlic extract and its enrichment on Artemia nauplii to feed the freshwater prawn Macrobrachium rosenbergii post-larvae. Res J Chem Environ21, 1-12.
[73] Cui, D., Liang, T., Sun, L., Meng, L., Yang, C., Wang, L., ... & Li, Q. (2018). Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharmaceutical biology56(1), 528-534.
[74] Kirupagaran, R., Saritha, A., & Bhuvaneswari, S. (2016). Green synthesis of selenium nanoparticles from leaf and stem extract of leucas lavandulifolia sm. and their application. Journal of Nanoscience and Technology, 224-226.
[75] Hassanien, R., Abed‐Elmageed, A. A., & Husein, D. Z. (2019). Eco‐Friendly Approach to Synthesize Selenium Nanoparticles: Photocatalytic Degradation of Sunset Yellow Azo Dye and Anticancer Activity. ChemistrySelect4(31), 9018-9026.
[76] Sivakumar, C., & Jeganathan, K. (2018). In-vitro cytotoxicity of java tea mediated selenium nanoballs against L6 cell lines. Journal of Drug Delivery and Therapeutics8(6), 195-200.
[77] Fardsadegh, B., Vaghari, H., Mohammad-Jafari, R., Najian, Y., & Jafarizadeh-Malmiri, H. (2019). Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Processing and Synthesis8(1), 191-198.
[78] Fritea, L., Laslo, V., Cavalu, S., Costea, T., & Vicas, S. I. (2017). Green biosynthesis of selenium nanoparticles using parsley (petroselinum crispum) leaves extract. Studia Universitatis" Vasile Goldis" Arad. Seria Stiintele Vietii (Life Sciences Series)27(3), 203-208.
[79] Alam, H., Khatoon, N., Raza, M., Ghosh, P. C., & Sardar, M. (2019). Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. BioNanoScience9(1), 96-104.
[80] Krishnan, V., Loganathan, C., & Thayumanavan, P. (2019). Green synthesized selenium nanoparticles using Spermacoce hispida as carrier of s-allyl glutathione: to accomplish hepatoprotective and nephroprotective activity against acetaminophen toxicity. Artificial cells, nanomedicine, and biotechnology47(1), 56-63.
[81] Vennila, K., Chitra, L., Balagurunathan, R., & Palvannan, T. (2018). Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract. Advances in Natural Sciences: Nanoscience and Nanotechnology9(1), 015005.
[82] Zhang, W., Zhang, J., Ding, D., Zhang, L., Muehlmann, L. A., Deng, S. E., ... & Zhang, W. (2018). Synthesis and antioxidant properties of Lycium barbarum polysaccharides capped selenium nanoparticles using tea extract. Artificial cells, nanomedicine, and biotechnology46(7), 1463-1470.
[83] Mellinas, C., Jiménez, A., & Garrigós, M. D. C. (2019). Microwave-Assisted Green Synthesis and Antioxidant Activity of Selenium Nanoparticles Using Theobroma cacao L. Bean Shell Extract. Molecules24(22), 4048.
[84] Sharma, G., Sharma, A. R., Bhavesh, R., Park, J., Ganbold, B., Nam, J. S., & Lee, S. S. (2014). Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules19(3), 2761-2770.
[85] Alagesan, V., & Venugopal, S. (2019). Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. Bionanoscience9(1), 105-116.
[86] Sadalage, P. S., Nimbalkar, M. S., Sharma, K. K. K., Patil, P. S., & Pawar, K. D. (2020). Sustainable approach to almond skin mediated synthesis of tunable selenium microstructures for coating cotton fabric to impart specific antibacterial activity. Journal of Colloid and Interface Science.
[87] Mulla, N. A., Otari, S. V., Bohara, R. A., Yadav, H. M., & Pawar, S. H. (2020). Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Materials Letters264, 127353.
[88] Menon, S., KS, S. D., Agarwal, H., & Shanmugam, V. K. (2019). Efficacy of Biogenic Selenium Nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid and Interface Science Communications29, 1-8.
[89] Sawant, V. J., & Sawant, V. J. (2020). Biogenic capped selenium nano rods as naked eye and selective hydrogen peroxide spectrometric sensor. Sensing and Bio-Sensing Research27, 100314.
[90] Liang, T., Qiu, X., Ye, X., Liu, Y., Li, Z., Tian, B., & Yan, D. (2020). Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech10(1), 23.