Scopus     h-index: 24

Document Type : Review Article

Author

Farabi Research Center, Jam, Bushehr, Iran

Abstract

This study presents an overview on the recent advances in fluorescence methods for detection of catecholamines. In the past few decades, development of fluorescence probe has appeared as an important research area, which attracted a remarkable amount of attention due to its considerable sensitivity, simplicity, and selectivity. In this study, detection of catecholamines based on fluorescent metal nanoparticles, fluorescent semiconductor nanoparticles, fluorescent dyes, conjugated polymers, graphene, carbon nanotube sensors, biosensors, chemiluminescence as well as combination of Fluorescence methods with electrophorese, chromatography, electrochemical techniques, and Raman spectroscopy were evaluated.

Graphical Abstract

Recent Advances in Fluorescence Detection of Catecholamines

Keywords

[1] Pradhan, T., Jung, H. S., Jang, J. H., Kim, T. W., Kang, C., & Kim, J. S. (2014). Chemical sensing of neurotransmitters. Chemical Society Reviews, 43(13), 4684-4713.
[2] Roshchina, V. V., & Yashin, V. A. (2014). Neurotransmitters catecholamines and histamine in allelopathy: Plant cells as models in fluorescence microscopy. Allelopathy Journal, 34(1), 1.
[3] Zapata, A., Chefer, V. I., Parrot, S., & Denoroy, L. (2013). Detection and quantification of neurotransmitters in dialysates. Current protocols in neuroscience, 63(1), 7-4.
[4] Van Staden, J. F., & van Staden, R. I. S. (2012). Flow-injection analysis systems with different detection devices and other related techniques for the in vitro and in vivo determination of dopamine as neurotransmitter. A review. Talanta, 102, 34-43.
[5] Perry, M., Li, Q., & Kennedy, R. T. (2009). Review of recent advances in analytical techniques for the determination of neurotransmitters. Analytica chimica acta, 653(1), 1-22.
[6] Wang, Y., Kang, K., Wang, S., Kang, W., Cheng, C., Niu, L. M., & Guo, Z. (2020). A novel label-free fluorescence aptasensor for dopamine detection based on an Exonuclease III-and SYBR Green I-aided amplification strategy. Sensors and Actuators B: Chemical, 305, 127348.
[7] Menon, S., Jesny, S., Sivasankaran, U., & KUMAR, K. G. (2016). Fluorometric determination of epinephrine: A green approach. Analytical Sciences, 32(9), 999-1001.
[8] Zhang, Y., Ren, W., Fan, Y. Z., Luo, H. Q., & Li, N. B. (2020). Chemically-modulated turn-on fluorescence for rapid and visual discrimination of norepinephrine and epinephrine and its application for dopamine-β-hydroxylase detection. Sensors and Actuators B: Chemical, 305, 127463.
[9] Grouzmann, E., & Lamine, F. (2013). Determination of catecholamines in plasma and urine. Best practice & research Clinical endocrinology & metabolism, 27(5), 713-723.
[10] Bicker, J., Fortuna, A., Alves, G., & Falcao, A. (2013). Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples—a review. Analytica chimica acta, 768, 12-34.
[11] Su, F., Wang, F., Zhu, R., & Li, H. (2009). Determination of 5-hydroxytryptamine, norepinephrine, dopamine and their metabolites in rat brain tissue by LC–ESI–MS–MS. Chromatographia, 69(3-4), 207-213.
[12] Hsieh, M. M., Lin, E. P., & Huang, S. W. (2012). On-line concentration and separation of cationic and anionic neurochemicals by capillary electrophoresis with UV absorption detection. Talanta, 88, 638-645.
[13] Lin, T. H., Lu, C. Y., & Tseng, W. L. (2013). Selective enrichment of catecholamines using iron oxide nanoparticles followed by CE with UV detection. Electrophoresis, 34(2), 297-303.
[14] Apetrei, I. M., Popa, C. V., Apetrei, C., & Tutunaru, D. (2014). Biosensors based on graphene modified screen-printed electrodes for the detection of catecholamines. Romanian Biotechnological Letters, 19(5), 9802.
[15] Ribeiro, J. A., Fernandes, P. M., Pereira, C. M., & Silva, F. (2016). Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: a review. Talanta, 160, 653-679.
[16] Liu, Q., Chen, X., Kang, Z. W., Zheng, C., & Yang, D. P. (2020). Facile Synthesis of Eggshell Membrane-Templated Au/CeO 2 3D Nanocomposite Networks for Nonenzymatic Electrochemical Dopamine Sensor. Nanoscale Research Letters, 15(1), 1-10.
[17] Vázquez-Guardado, A., Barkam, S., Peppler, M., Biswas, A., Dennis, W., Das, S., ... & Chanda, D. (2018). Enzyme-free plasmonic biosensor for direct detection of neurotransmitter dopamine from whole blood. Nano letters, 19(1), 449-454.
[18] Godoy-Reyes, T. M., Costero, A. M., Gaviña, P., Martínez-Máñez, R., & Sancenón, F. (2019). A Colorimetric Probe for the Selective Detection of Norepinephrine Based on a Double Molecular Recognition with Functionalized Gold Nanoparticles. ACS Applied Nano Materials, 2(3), 1367-1373.
[19] Godoy-Reyes, T. M., Llopis-Lorente, A., Costero, A. M., Sancenón, F., Gaviña, P., & Martínez-Máñez, R. (2018). Selective and sensitive colorimetric detection of the neurotransmitter serotonin based on the aggregation of bifunctionalised gold nanoparticles. Sensors and Actuators B: Chemical, 258, 829-835.
[20] Jafarinejad, S., Ghazi-Khansari, M., Ghasemi, F., Sasanpour, P., & Hormozi-Nezhad, M. R. (2017). Colorimetric fingerprints of gold nanorods for discriminating catecholamine neurotransmitters in urine samples. Scientific reports, 7(1), 1-8.
[21] Gorbunova, M. V., Gutorova, S. V., Berseneva, D. A., Apyari, V. V., Zaitsev, V. D., Dmitrienko, S. G., & Zolotov, Y. A. (2019). Spectroscopic methods for determination of catecholamines: A mini-review. Applied Spectroscopy Reviews, 54(8), 631-652.
[22] Roshchina, V. V. (2016). The fluorescence methods to study neurotransmitters (biomediators) in plant cells. Journal of fluorescence, 26(3), 1029-1043.
[23] Polo, E., & Kruss, S. (2016). Nanosensors for neurotransmitters. Analytical and bioanalytical chemistry, 408(11), 2727-2741.
[24] Kong, B., Zhu, A., Luo, Y., Tian, Y., Yu, Y., & Shi, G. (2011). Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angewandte Chemie International Edition, 50(8), 1837-1840.
[25] Ahmadi, N., Bagherzadeh, M., & Nemati, A. (2020). Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite. Biosensors and Bioelectronics, 151, 111977.
[26] Sivakumar, P., Priyatharshni, S., & Kumar, K. (2020). Fluorescent silver nanoparticles for sensitive and selective detection of dopamine. Materials Chemistry and Physics, 240, 122167.
[27] Alam, A. M., Kamruzzaman, M., Lee, S. H., Kim, Y. H., Kim, S. Y., Kim, G. M., ... & Kim, S. H. (2012). Determination of catecholamines based on the measurement of the metal nanoparticle-enhanced fluorescence of their terbium complexes. Microchimica Acta, 176(1-2), 153-161.
[28] Devi, J. A., Aswathy, B., Asha, S., & George, S. (2017). Lactose tailored boronic acid conjugated fluorescent gold nanoclusters for turn-on sensing of dopamine. Journal of analytical chemistry, 72(4), 445-459.
[29] Liu, C. H., Yu, C. J., & Tseng, W. L. (2012). Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Analytica chimica acta, 745, 143-148.
[30] Li, H., Shen, J., Cui, R., Sun, C., Zhao, Y., Wu, X., ... & Tang, B. (2017). A highly selective and sensitive fluorescent nanosensor for dopamine based on formate bridged Tb (III) complex and silver nanoparticles. Analyst, 142(22), 4240-4246.
[31] Shen, J., Sun, C., & Wu, X. (2017). Silver nanoprisms-based Tb (III) fluorescence sensor for highly selective detection of dopamine. Talanta, 165, 369-376.
[32] Lin, Y., Yin, M., Pu, F., Ren, J., & Qu, X. (2011). DNA‐Templated Silver Nanoparticles as a Platform for Highly Sensitive and Selective Fluorescence Turn‐On Detection of Dopamine. Small, 7(11), 1557-1561.
[33] Tao, Y., Lin, Y., Ren, J., & Qu, X. (2013). A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Aunanoclusters. Biosensors and Bioelectronics, 42, 41-46.
[34] Aswathy, B., & Sony, G. (2014). Cu2+ modulated BSA–Au nanoclusters: A versatile fluorescence turn-on sensor for dopamine. Microchemical Journal, 116, 151-156.
[35] Ban, R., Abdel-Halim, E. S., Zhang, J., & Zhu, J. J. (2015). β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine. Analyst, 140(4), 1046-1053.
[36] Xu, J., Li, Y., Wang, L., Huang, Y., Liu, D., Sun, R., ... & Sun, C. (2015). A facile aptamer-based sensing strategy for dopamine through the fluorescence resonance energy transfer between rhodamine B and gold nanoparticles. Dyes and Pigments, 123, 55-63.
[37] Makwana, B. A., Darjee, S., Jain, V. K., Kongor, A., Sindhav, G., & Rao, M. V. (2017). A comparative study: Metal nanoparticles as fluorescent sensors for biomolecules and their biomedical application. Sensors and Actuators B: Chemical, 246, 686-695.
[38] Zhang, Y., Qi, S., Liu, Z., Shi, Y., Yue, W., & Yi, C. (2016). Rapid determination of dopamine in human plasma using a gold nanoparticle-based dual-mode sensing system. Materials Science and Engineering: C, 61, 207-213.
[39] Hee An, J., Lee, K. J., & Choi, J. W. (2016). Gold nanoparticles-based barcode analysis for detection of norepinephrine. Journal of biomedical nanotechnology, 12(2), 357-365.
[40] RosináJose, A., & GirisháKumar, K. (2016). A colorimetric and fluorometric sensor for the determination of norepinephrine. Analytical Methods, 8(29), 5801-5805.
[41] Sun, C., Shen, J., Cui, R., Yuan, F., Zhang, H., & Wu, X. (2019). Silver nanoflowers-enhanced Tb (III)/La (III) co-luminescence for the sensitive detection of dopamine. Analytical and bioanalytical chemistry, 411(7), 1375-1381.
[42] Ling, X., Shi, R., Zhang, J., Liu, D., Weng, M., Zhang, C., ... & Huang, W. (2018). Dual-signal luminescent detection of dopamine by a single type of lanthanide-doped nanoparticles. ACS sensors, 3(9), 1683-1689.
[43] Wang, C., Shi, H., Yang, M., Yan, Y., Liu, E., Ji, Z., & Fan, J. (2020). A novel nitrogen-doped carbon quantum dots as effective fluorescent probes for detecting dopamine. Journal of Photochemistry and Photobiology A: Chemistry, 112374.
[44] Shi, H., Jia, L., Wang, C., Liu, E., Ji, Z., & Fan, J. (2020). A high sensitive and selective fluorescent probe for dopamine detection based on water soluble AgInS2 quantum dots. Optical Materials, 99, 109549.
[45] Pandey, P. K., Chand, P., Rawat, K., Prasad, T., & Bohidar, H. B. (2020). Multifunctional, fluorescent DNA derived carbon dots for biomedical applications: bioimaging, luminescent DNA hydrogels and dopamine detection. Journal of Materials Chemistry B.
[46] Chen, Y. (2020). Advances in fluorescent probes for detection and imaging of endogenous tyrosinase activity. Analytical Biochemistry, 113614.
[47] Qu, K., Wang, J., Ren, J., & Qu, X. (2013). Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label‐free detection of iron (III) ions and dopamine. Chemistry–A European Journal, 19(22), 7243-7249.
[48] Xiangzhao, A., Qiang, M., & Xingguang, S. (2013). Nanosensor for dopamine and glutathione based on the quenching and recovery of the fluorescence of silica-coated quantum dots. Microchimica Acta, 180(3-4), 269-277.
[49] Zhu, L., Xu, G., Song, Q., Tang, T., Wang, X., Wei, F., & Hu, Q. (2016). Highly sensitive determination of dopamine by a turn-on fluorescent biosensor based on aptamer labeled carbon dots and nano-graphite. Sensors and Actuators B: Chemical, 231, 506-512.
[50] Wei, F., Xu, G., Wu, Y., Wang, X., Yang, J., Liu, L., ... & Hu, Q. (2016). Molecularly imprinted polymers on dual-color quantum dots for simultaneous detection of norepinephrine and epinephrine. Sensors and Actuators B: Chemical, 229, 38-46.
[51] Asadpour-Zeynali, K., & Mollarasouli, F. (2016). A novel and facile synthesis of TGA-capped CdSe@ Ag2Se core-shell quantum dots as a new substrate for high sensitive and selective methyldopa sensor. Sensors and Actuators B: Chemical, 237, 387-399.
[52] Pourghobadi, Z., Mirahmadpour, P., & Zare, H. (2018). Fluorescent biosensor for the selective determination of dopamine by TGA-capped CdTe quantum dots in human plasma samples. Optical Materials, 84, 757-762.
[53] Zhang, Y., Wang, B., Xiong, H., Wen, W., & Cheng, N. (2019). A ratiometric fluorometric epinephrine and norepinephrine assay based on carbon dot and CdTe quantum dots nanocomposites. Microchemical Journal, 146, 66-72.
[54] Noipa, T., & Ngeontae, W. (2018). Thioglycolic acid-capped CdS quantum dots modified with $$hbox {Co}^{2+} $$ as a fluorescent sensor for dopamine. Bulletin of Materials Science, 41(4), 109.
[55] Wang, Z., Zhang, Y., Zhang, B., & Lu, X. (2018). Mn2+ doped ZnS QDs modified fluorescence sensor based on molecularly imprinted polymer/sol-gel chemistry for detection of Serotonin. Talanta, 190, 1-8.
[56] Klockow, J. L., & Glass, T. E. (2013). Development of a fluorescent chemosensor for the detection of kynurenine. Organic letters, 15(2), 235-237.
[57] Klockow, J. L., Hettie, K. S., & Glass, T. E. (2013). ExoSensor 517: a dual-analyte fluorescent chemosensor for visualizing neurotransmitter exocytosis. ACS chemical neuroscience, 4(10), 1334-1338.
[58] Rodionov, P. V., Veselova, I. A., & Shekhovtsova, T. N. (2014). A solid-phase fluorescent biosensor for the determination of phenolic compounds and peroxides in samples with complex matrices. Analytical and bioanalytical chemistry, 406(5), 1531-1540.
[59] Hettie, K. S., & Glass, T. E. (2014). Coumarin‐3‐Aldehyde as a Scaffold for the Design of Tunable PET‐Modulated Fluorescent Sensors for Neurotransmitters. Chemistry–A European Journal, 20(52), 17488-17499.
[60] Kamruzzaman, M., Alam, A. M., Lee, S. H., Kim, Y. H., & Kim, S. H. (2012). A terbium‐sensitized spectrofluorimetric method for determination of catecholamines in a serum sample with micelle medium. Luminescence, 27(1), 84-90.
[61] Wu, Z., Yang, X., Xu, W., Wang, B., & Fang, H. (2012). A new boronic acid-based fluorescent sensor for L-dihydroxy-phenylalanine. Drug discoveries & therapeutics, 6(5), 238-241.
[62] Seto, D., Maki, T., Soh, N., Nakano, K., Ishimatsu, R., & Imato, T. (2012). A simple and selective fluorometric assay for dopamine using a calcein blue–Fe2+ complex fluorophore. Talanta, 94, 36-43.
[63] Sanguansap, Y., Ruangpornvisuti, V., Tuntulani, T., Promarak, V., & Tomapatanaget, B. (2015). Highly promising discrimination of various catecholamines using ratiometric fluorescence probes with intermolecular self-association of two sensing elements. RSC Advances, 5(96), 78468-78475.
[64] Niu, S., Fang, Y., Zhang, K., Sun, J., & Wan, J. (2017). Determination of dopamine using the fluorescence quenching of 2, 3-diaminophenazine. Instrumentation Science & Technology, 45(1), 101-110.
[65] Suzuki, Y. (2017). Design and synthesis of fluorescent reagents for selective detection of dopamine. Sensors and Actuators B: Chemical, 239, 383-389.
[66] Bera, K., Das, A. K., Rakshit, A., Sarkar, B., Rawat, A., Maity, B. K., & Maiti, S. (2017). Fluorogenic detection of monoamine neurotransmitters in live cells. ACS chemical neuroscience, 9(3), 469-474.
[67] Tabrizi, A. B., Bahrami, F., & Badrouj, H. (2017). A very simple and sensitive spectrofluorimetric method based on the oxidation with cerium (IV) for the determination of four different drugs in their pharmaceutical formulations. Pharmaceutical Sciences, 23(1), 50.
[68] Wang, H., Fang, G., Wang, K., Wu, Z., & Yao, Q. (2019). Determination of Dopamine Using 2-(4-Boronophenyl) quinoline-4-carboxylic Acids as Fluorescent Probes. Analytical Letters, 52(4), 713-727.
[69] Tseng, W. L., & Cheng, T. L. (2009). Ultrasensitive detection of indoleamines by combination of nanoparticle-based extraction with capillary electrophoresis/laser-induced native fluorescence. Journal of Chromatography A, 1216(36), 6451-6458.
[70] Cakal, C., Ferrance, J. P., Landers, J. P., & Caglar, P. (2010). Development of a micro-total analysis system (μ-TAS) for the determination of catecholamines. Analytical and bioanalytical chemistry, 398(5), 1909-1917.
[71] Zhang, N., Zhang, H. S., & Wang, H. (2009). Separation of free amino acids and catecholamines in human plasma and rabbit vitreous samples using a new fluorogenic reagent 3‐(4‐bromobenzoyl)‐2‐quinolinecarboxaldehyde with CE‐LIF detection. Electrophoresis, 30(13), 2258-2265.
[72] Hu, H., Li, Z., Zhang, X., Xu, C., & Guo, Y. (2013). Rapid determination of catecholamines in urine samples by nonaqueous microchip electrophoresis with LIF detection. Journal of separation science.
[73] Zhang, Q., & Gong, M. (2016). On-line preconcentration of fluorescent derivatives of catecholamines in cerebrospinal fluid using flow-gated capillary electrophoresis. Journal of Chromatography A, 1450, 112-120.
[74] Hu, Y., Wu, X., Su, Y., Hou, X., & Zhang, J. (2009). Capillary zone electrophoresis hyphenated with laser-induced fluorescence detection for sensitive determination of noradrenaline and dopamine with 5-(4, 6-dichloro-s-triazin-2-ylamino) fluorescein as fluorescent label. Microchimica Acta, 166(3-4), 289-294.
[75] Tian, S. L., Xu, H. X., Sung, J. J., & Bian, Z. X. (2009). Quantification of luminally released serotonin in rat proximal colon by capillary electrophoresis with laser-induced fluorescence detection. Analytical and bioanalytical chemistry, 393(8), 2059-2066.
[76] Diao, P., Yuan, H., Huo, F., Chen, L., Xiao, D., Paau, M. C., & Choi, M. M. (2011). A simple and sensitive CE method for the simultaneous determination of catecholamines in urine with in-column optical fiber light-emitting diode-induced fluorescence detection. Talanta, 85(3), 1279-1284.
[77] Liu, W. L., Hsu, Y. F., Liu, Y. W., Singco, B., Chen, S. W., Huang, H. Y., & Chin, T. Y. (2012). Capillary electrophoresis‐laser‐induced fluorescence detection of rat brain catecholamines with microwave‐assisted derivatization. Electrophoresis, 33(19-20), 3008-3011.
[78] Ohla, S., Schulze, P., Fritzsche, S., & Belder, D. (2011). Chip electrophoresis of active banana ingredients with label-free detection utilizing deep UV native fluorescence and mass spectrometry. Analytical and bioanalytical chemistry, 399(5), 1853-1857.
[79] Zhang, N., Guo, X. F., Wang, H., & Zhang, H. S. (2011). Determination of amino acids and catecholamines derivatized with 3-(4-chlorobenzoyl)-2-quinolinecarboxaldehyde in PC12 and HEK293 cells by capillary electrophoresis with laser-induced fluorescence detection. Analytical and bioanalytical chemistry, 401(1), 297-304.
[80] Cecala, C., Rubakhin, S. S., Mitchell, J. W., Gillette, M. U., & Sweedler, J. V. (2012). A hyphenated optical trap capillary electrophoresis laser induced native fluorescence system for single-cell chemical analysis. Analyst, 137(13), 2965-2972.
[81] Dailey, C. A., Garnier, N., Rubakhin, S. S., & Sweedler, J. V. (2013). Automated method for analysis of tryptophan and tyrosine metabolites using capillary electrophoresis with native fluorescence detection. Analytical and bioanalytical chemistry, 405(8), 2451-2459.
[82] Couderc, F., Ong‐Meang, V., & Poinsot, V. (2017). Capillary electrophoresis hyphenated with UV‐native‐laser induced fluorescence detection (CE/UV‐native‐LIF). Electrophoresis, 38(1), 135-149.
[83] Prior, A., Coliva, G., de Jong, G. J., & Somsen, G. W. (2018). Chiral capillary electrophoresis with UV-excited fluorescence detection for the enantioselective analysis of 9-fluorenylmethoxycarbonyl-derivatized amino acids. Analytical and bioanalytical chemistry, 410(20), 4979-4990.
[84] Saylor, R. A., Reid, E. A., & Lunte, S. M. (2015). Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway. Electrophoresis, 36(16), 1912-1919.
[85] Álvarez-Martos, I., Fernández-Abedul, M. T., Anillo, A., Fierro, J. L. G., Alonso, F. J. G., & Costa-García, A. (2012). Poly (acrylic acid) microchannel modification for the enhanced resolution of catecholamines microchip electrophoresis with electrochemical detection. Analytica chimica acta, 724, 136-143.
[86] Su, Y., Chen, C., Hou, X., & Zhang, J. (2011). A new capillary electrophoresis-direct chemiluminescence system for the determination of epinephrine and mechanism study. Analytical Methods, 3(12), 2893-2897.
[87] Hu, H. M., Yin, X. F., Wang, X. Z., & Shen, H. (2013). A study on the system of nonaqueous microchip electrophoresis with on‐line peroxyoxalate chemiluminescence detection. Journal of separation science, 36(4), 713-720.
[88] Xu, X., Zhang, H., Shi, H., Ma, C., Cong, B., & Kang, W. (2012). Determination of three major catecholamines in human urine by capillary zone electrophoresis with chemiluminescence detection. Analytical biochemistry, 427(1), 10-17.
[89] Ferreira, F. D., Silva, L. I., Freitas, A. C., Rocha-Santos, T. A., & Duarte, A. C. (2009). High performance liquid chromatography coupled to an optical fiber detector coated with laccase for screening catecholamines in plasma and urine. Journal of Chromatography A, 1216(42), 7049-7054.
[90] Chau, R. M., & Patel, B. A. (2009). Determination of serotonin, melatonin and metabolites in gastrointestinal tissue using high‐performance liquid chromatography with electrochemical detection. Biomedical Chromatography, 23(2), 175-181.
[91] Tsunoda, M., Aoyama, C., Ota, S., Tamura, T., & Funatsu, T. (2011). Extraction of catecholamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography-electrochemical detection. Analytical Methods, 3(3), 582-585.
[92] Song, Y., Funatsu, T., & Tsunoda, M. (2012). Rapid determination of amino acids in biological samples using a monolithic silica column. Amino Acids, 42(5), 1897-1902.
[93] Pfister, G., Rieb, J., Avramov, M., Rock, T., Griebler, C., & Schramm, K. W. (2013). Detection of catecholamines in single specimens of groundwater amphipods. Analytical and bioanalytical chemistry, 405(16), 5571-5582.
[94] Thomas, J., Khanam, R., & Vohora, D. (2015). A validated HPLC-UV method and optimization of sample preparation technique for norepinephrine and serotonin in mouse brain. Pharmaceutical biology, 53(10), 1539-1544.
[95] He, H., Zhou, Z., Dong, C., Wang, X., Yu, Q. W., Lei, Y., ... & Feng, Y. (2016). Facile synthesis of a boronate affinity sorbent from mesoporous nanomagnetic polyhedral oligomeric silsesquioxanes composite and its application for enrichment of catecholamines in human urine. Analytica chimica acta, 944, 1-13.
[96] Cakal, C., Ferrance, J. P., Landers, J. P., & Caglar, P. (2011). Microchip extraction of catecholamines using a boronic acid functional affinity monolith. Analytica chimica acta, 690(1), 94-100.
[97] Miękus, N., Kowalski, P., Olędzka, I., Plenis, A., Bień, E., Miękus, A., ... & Bączek, T. (2015). Cyclodextrin-modified MEKC method for quantification of selected acidic metabolites of catecholamines in the presence of various biogenic amines. Application to diagnosis of neuroblastoma. Journal of Chromatography B, 1003, 27-34.
[98] Kumar, A., Hart, J. P., & McCalley, D. V. (2011). Determination of catecholamines in urine using hydrophilic interaction chromatography with electrochemical detection. Journal of Chromatography A, 1218(25), 3854-3861.
[99] Jiang, L., Chen, Y., Luo, Y., Tan, Y., Ma, M., Chen, B., ... & Luo, X. (2015). Determination of catecholamines in urine using aminophenylboronic acid functionalized magnetic nanoparticles extraction followed by high‐performance liquid chromatography and electrochemical detection. Journal of separation science, 38(3), 460-467.
[100] Tsunoda, M., & Funatsu, T. (2012). Catecholamine analysis with strong cation exchange column liquid chromatography–peroxyoxalate chemiluminescence reaction detection. Analytical and bioanalytical chemistry, 402(3), 1393-1397.
[101] Mu, C., Zhang, Q., Wu, D., Zhang, Y., & Zhang, Q. (2015). Simultaneous quantification of catecholamines in rat brain by high‐performance liquid chromatography with on‐line gold nanoparticle‐catalyzed luminol chemiluminescence detection. Biomedical Chromatography, 29(1), 148-155.
[102] Wu, D., Xie, H., Lu, H., Li, W., & Zhang, Q. (2016). Sensitive determination of norepinephrine, epinephrine, dopamine and 5‐hydroxytryptamine by coupling HPLC with [Ag (HIO6) 2] 5−–luminol chemiluminescence detection. Biomedical Chromatography, 30(9), 1458-1466.
[103] Sima, I. A., Casoni, D., & Sârbu, C. (2013). High sensitive and selective HPTLC method assisted by digital image processing for simultaneous determination of catecholamines and related drugs. Talanta, 114, 117-123.
[104] Singh, V., Chaube, R., Chourasia, T. K., & Joy, K. P. (2010). Temporal and periovulatory changes in ovarian catecholamines in the catfish Heteropneustes fossilis. General and comparative endocrinology, 168(1), 46-54.
[105] Mercolini, L., Gerra, G., Consorti, M., Somaini, L., & Raggi, M. A. (2009). Fast analysis of catecholamine metabolites MHPG and VMA in human plasma by HPLC with fluorescence detection and a novel SPE procedure. Talanta, 78(1), 150-155.
[106] Saraji, M., & Shahvar, A. (2016). Selective micro solid-phase extraction of epinephrine, norepinephrine and dopamine from human urine and plasma using aminophenylboronic acid covalently immobilized on magnetic nanoparticles followed by high-performance liquid chromatography-fluorescence detection. Analytical Methods, 8(4), 830-839.
[107] Tsunoda, M., Aoyama, C., Nomura, H., Toyoda, T., Matsuki, N., & Funatsu, T. (2010). Simultaneous determination of dopamine and 3, 4-dihydroxyphenylacetic acid in mouse striatum using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography. Journal of pharmaceutical and biomedical analysis, 51(3), 712-715.
[108] Davletbaeva, P., Falkova, M., Safonova, E., Moskvin, L., & Bulatov, A. (2016). Flow method based on cloud point extraction for fluorometric determination of epinephrine in human urine. Analytica chimica acta, 911, 69-74.
[109] Liu, L., Li, Q., Li, N., Ling, J., Liu, R., Wang, Y., ... & Bi, K. (2011). Simultaneous determination of catecholamines and their metabolites related to Alzheimer's disease in human urine. Journal of separation science, 34(10), 1198-1204.
[110] Khonté, A., Thiaré, D. D., Diop, C., Cissé, L., Delattre, F., Coly, A., ... & Tine, A. (2015). New Spectrofluorimetric Method for Determining Serotonin: Application to Human Urine. International Journal of Chemistry, 7(2), 85.
[111] Zhao, H. X., Mu, H., Bai, Y. H., Yu, H., & Hu, Y. M. (2011). A rapid method for the determination of dopamine in porcine muscle by pre-column derivatization and HPLC with fluorescence detection. Journal of pharmaceutical analysis, 1(3), 208-212.
[112] Zagajewski, J., Drozdowicz, D., Brzozowska, I., Hubalewska-Mazgaj, M., Stelmaszynska, T., Laidler, P. M., & Brzozowski, T. (2012). Conversion L-tryptophan to melatonin in the gastrointestinal tract: the new high performance liquid chromatography method enabling simultaneous determination of six metabolites of L-tryptophan by native fluorescence and UV-VIS detection. J. Physiol. Pharmacol, 63(6), 613-621.
[113] Kanamori, T., Isokawa, M., Funatsu, T., & Tsunoda, M. (2015). Development of analytical method for catechol compounds in mouse urine using hydrophilic interaction liquid chromatography with fluorescence detection. Journal of Chromatography B, 985, 142-148.
[114] Altun, M., Cakal, C., & Caglar, P. (2015). The development of methacrylic acid based monolithic discs used in the microfluidic chips for application in the determination of catecholamines. Sensors and Actuators B: Chemical, 208, 164-172.
[115] Fonseca, B. M., Rodrigues, M., Cristóvão, A. C., Gonçalves, D., Fortuna, A., Bernardino, L., ... & Alves, G. (2017). Determination of catecholamines and endogenous related compounds in rat brain tissue exploring their native fluorescence and liquid chromatography. Journal of Chromatography B, 1049, 51-59.
[116] De Benedetto, G. E., Fico, D., Pennetta, A., Malitesta, C., Nicolardi, G., Lofrumento, D. D., ... & La Pesa, V. (2014). A rapid and simple method for the determination of 3, 4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. Journal of pharmaceutical and biomedical analysis, 98, 266-270.
[117] Wang, X., Liang, Y., Wang, Y., Fan, M., Sun, Y., Liu, J., & Zhang, N. (2018). Simultaneous determination of 10 kinds of biogenic amines in rat plasma using high‐performance liquid chromatography coupled with fluorescence detection. Biomedical Chromatography, 32(6), e4211.
[118] Fang, W. L., Xia, L. J., Huang, X., Guo, X. F., Ding, J., Wang, H., & Feng, Y. Q. (2018). Highly sensitive determination for catecholamines using boronate affinity polymer monolith microextraction with in-situ derivatization and HPLC fluorescence detection. Chromatographia, 81(10), 1381-1389.
[119] Sakaguchi, Y., Yoshida, H., Hayama, T., Itoyama, M., Todoroki, K., Yamaguchi, M., & Nohta, H. (2011). Selective liquid-chromatographic determination of native fluorescent biogenic amines in human urine based on fluorous derivatization. Journal of Chromatography A, 1218(33), 5581-5586.
[120] Silva, L., Duarte, K., Freitas, A. C., Panteleitchouk, T. S., Rocha-Santos, T. A., Pereira, M. E., & Duarte, A. C. (2012). A fluorescence-based optical fiber analyzer for catecholamine determination. Analytical Methods, 4(8), 2300-2306.
[121] He, M., Wang, C., & Wei, Y. (2016). Selective enrichment and determination of monoamine neurotransmitters by Cu (II) immobilized magnetic solid phase extraction coupled with high-performance liquid chromatography-fluorescence detection. Talanta, 147, 437-444.
[122] Jemelkova, Z., Barek, J., & Zima, J. (2010). Determination of epinephrine at different types of carbon paste electrodes. Analytical letters, 43(7-8), 1367-1376.
[123] Baba, A., Mannen, T., Ohdaira, Y., Shinbo, K., Kato, K., Kaneko, F., ... & Ushijima, H. (2010). Detection of adrenaline on poly (3-aminobenzylamine) ultrathin film by electrochemical-surface plasmon resonance spectroscopy. Langmuir, 26(23), 18476-18482.
[124] Njagi, J., Chernov, M. M., Leiter, J. C., & Andreescu, S. (2010). Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Analytical chemistry, 82(3), 989-996.
[125] Mataveli, L. R. V., de Jesus Antunes, N., Brigagão, M. R. P. L., de Magalhães, C. S., Wisniewski, C., & Luccas, P. O. (2010). Evaluation of a simple and low cost potentiometric biosensor for pharmaceutical and in vivo adrenaline determination. Biosensors and Bioelectronics, 26(2), 798-802.
[126] Hasanzadeh, M., Shadjou, N., & Omidinia, E. (2013). A novel electroanalytical method for simultaneous detection of two neurotransmitter dopamine and serotonin in human serum. Journal of neuroscience methods, 219(1), 52-60.
[127] Ensafi, A. A., Saeid, B., Rezaei, B., & Allafchian, A. R. (2015). Differential pulse voltammetric determination of methyldopa using MWCNTs modified glassy carbon decorated with NiFe 2 O 4 nanoparticles. Ionics, 21(5), 1435-1444.
[128] Teradale, A. B., Lamani, S. D., Ganesh, P. S., Kumara Swamy, B. E., & Das, S. N. (2017). Niacin Film Coated Carbon Paste Electrode Sensor for the Determination of Epinephrine in Presence of Uric Acid: A Cyclic Voltammetric Study. Analytical Chemistry Letters, 7(6), 748-764.
[129] Joshi, S., Bhatt, V. D., Märtl, A., Becherer, M., & Lugli, P. (2018). Regenerative, highly-sensitive, non-enzymatic dopamine sensor and impact of different buffer systems in dopamine sensing. Biosensors, 8(1), 9.
[130] Haghshenas, E., Madrakian, T., & Afkhami, A. (2016). Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples. Analytical and bioanalytical chemistry, 408(10), 2577-2586.
[131] Sanghavi, B. J., Mobin, S. M., Mathur, P., Lahiri, G. K., & Srivastava, A. K. (2013). Biomimetic sensor for certain catecholamines employing copper (II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosensors and Bioelectronics, 39(1), 124-132.
[132] Kisler, K., Kim, B. N., Liu, X., Berberian, K., Fang, Q., Mathai, C. J., ... & Lindau, M. (2012). Transparent electrode materials for simultaneous amperometric detection of exocytosis and fluorescence microscopy. Journal of biomaterials and nanobiotechnology, 3(2A), 243.
[133] Pasquarelli, A., Marcantoni, A., Gavello, D., Battiato, A., Picollo, F., Olivero, P., ... & Carabelli, V. (2016). Simultaneous Fluorescent and Amperometric Detection Of Catecholamine Release From Neuroendocrine Cells With Transparent Diamond MEAs. Frontiers in Neuroscience.
[134] Liu, X., Hu, L., Pan, N., Grimaud, L., Labbé, E., Buriez, O., ... & Guille-Collignon, M. (2018). Coupling electrochemistry and TIRF-microscopy with the fluorescent false neurotransmitter FFN102 supports the fluorescence signals during single vesicle exocytosis detection. Biophysical chemistry, 235, 48-55.
[135] Fajardo, A., Tapia, D., Pizarro, J., Segura, R., & Jara, P. (2019). Determination of norepinephrine using a glassy carbon electrode modified with graphene quantum dots and gold nanoparticles by square wave stripping voltammetry. Journal of Applied Electrochemistry, 49(4), 423-432.
[136] Montesinos, M. S., Camacho, M., Machado, J. D., Viveros, O. H., Beltrán, B., & Borges, R. (2010). The quantal secretion of catecholamines is impaired by the accumulation of β‐adrenoceptor antagonists into chromaffin cell vesicles. British journal of pharmacology, 159(7), 1548-1556.
[137] Hettie, K. S., Liu, X., Gillis, K. D., & Glass, T. E. (2013). Selective catecholamine recognition with NeuroSensor 521: a fluorescent sensor for the visualization of norepinephrine in fixed and live cells. ACS chemical neuroscience, 4(6), 918-923.
[138] Chaicham, A., Sahasithiwat, S., Tuntulani, T., & Tomapatanaget, B. (2013). Highly effective discrimination of catecholamine derivatives via FRET-on/off processes induced by the intermolecular assembly with two fluorescence sensors. Chemical Communications, 49(81), 9287-9289.
[139] Del Bonis-O’Donnell, J. T., Thakrar, A., Hirschberg, J. W., Vong, D., Queenan, B. N., Fygenson, D. K., & Pennathur, S. (2017). DNA-stabilized silver nanoclusters as specific, ratiometric fluorescent dopamine sensors. ACS chemical neuroscience, 9(4), 849-857.
[140] Lin, H. J., Hong, Z. Y., Li, Y. K., & Liau, I. (2016). Fluorescent tracer of dopamine enables selective labelling and interrogation of dopaminergic amacrine cells in the retina of living zebrafish. RSC advances, 6(75), 71589-71595.
[141] Das, S., & Purkayastha, P. (2017). A Fluorescence Lifetime Imaging Microscopy Supported Investigation on Temperature-Dependent Penetration of Dopamine in a 1, 2-Ditetradecanoyl-sn-glycero-3-phospho-(1′-rac-glycerol) Lipid Bilayer. Langmuir, 33(29), 7281-7287.
[142] Makedonskaya, M. I., Veselova, I. A., Kalmykov, S. N., & Shekhovtsova, T. N. (2018). Novel biosensing system for the simultaneous multiplex fluorescent determination of catecholamines and their metabolites in biological liquids. Journal of pharmaceutical and biomedical analysis, 156, 133-141.
[143] Kolusheva, S., Molt, O., Herm, M., Schrader, T., & Jelinek, R. (2005). Selective detection of catecholamines by synthetic receptors embedded in chromatic polydiacetylene vesicles. Journal of the American Chemical Society, 127(28), 10000-10001.
[144] Tsunoda, M. (2009). Chemiluminescence detection with separation techniques for bioanalytical applications. Bioanalytical Reviews, 1(1), 25.
[145] Chen, Y. C., & Lin, W. Y. (2010). Enhancement of chemiluminescence of the KIO4–luminol system by gallic acid, acetaldehyde and Mn2+: application for the determination of catecholamines. Luminescence, 25(1), 43-49.
[146] Zhao, S., Niu, T., Song, Y., & Liu, Y. M. (2009). Gold nanoparticle‐enhanced chemiluminescence detection for CE. Electrophoresis, 30(6), 1059-1065.
[147] Zhao, Y., Zhao, S., Huang, J., & Ye, F. (2011). Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta, 85(5), 2650-2654.
[148] Xu, X., Shi, H., Ma, L., Kang, W., & Li, S. (2011). Determination of trace amounts of dopamine by flow‐injection analysis coupled with luminol–Ag (III) complex chemiluminescence detection. Luminescence, 26(2), 93-100.
[149] Xu, X., Shi, H., Ma, L., Kang, W., & Li, S. (2011). Determination of trace amounts of dopamine by flow‐injection analysis coupled with luminol–Ag (III) complex chemiluminescence detection. Luminescence, 26(2), 93-100.
[150] Amjadi, M., Hallaj, T., Manzoori, J. L., & Shahbazsaghir, T. (2018). An amplified chemiluminescence system based on Si-doped carbon dots for detection of catecholamines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 201, 223-228.
[151] van Staden, J. K. F., & State, R. (2016). Determination of Dopamine Using the Alkaline Luminol–Hydrogen Peroxide System for Sequential Injection–Zone Fluidics Analysis. Analytical Letters, 49(17), 2783-2792.
[152] Chen, X. Y., Zheng, R. J., Ren, L. Q., & Sun, J. J. (2016). Determination of ultra-trace catecholamines based on hot electron-induced cathodic electrochemiluminescence at a naturally oxide-covered tantalum electrode. RSC advances, 6(20), 16495-16499.
[153] Huang, H., Gao, Y., Shi, F., Wang, G., Shah, S. M., & Su, X. (2012). Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer–enzyme hybrid system. Analyst, 137(6), 1481-1486.
[154] Lv, Y., Ma, H., Gao, D., Zhong, Y., Xu, H., & Mao, Z. (2013). The synthesis and adhesive performance of the poly (N-benzyloxycarbonyl-3, 4-dihydroxyphenylalanine) derived from 3, 4-dihydroxyphenylalanine. Journal of adhesion science and technology, 27(1), 81-89.
[155] Barrett, D. G., Fullenkamp, D. E., He, L., Holten‐Andersen, N., Lee, K. Y. C., & Messersmith, P. B. (2013). pH‐based regulation of hydrogel mechanical properties through mussel‐inspired chemistry and processing. Advanced functional materials, 23(9), 1111-1119.
[156] Yildirim, A., & Bayindir, M. (2014). Turn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles. Analytical chemistry, 86(11), 5508-5512.
[157] Hormozi-Nezhad, M. R., Moslehipour, A., & Bigdeli, A. (2017). Simple and rapid detection of l-dopa based on in situ formation of polylevodopa nanoparticles. Sensors and Actuators B: Chemical, 243, 715-720.
[158] Wei, X., Zhang, Z., & Wang, Z. (2019). A simple dopamine detection method based on fluorescence analysis and dopamine polymerization. Microchemical Journal, 145, 55-58.
[159] Ghasemi, F., Hormozi-Nezhad, M. R., & Mahmoudi, M. (2016). Identification of catecholamine neurotransmitters using fluorescence sensor array. Analytica chimica acta, 917, 85-92.
[160] Pablos, J. L., Vallejos, S., Ibeas, S., Muñoz, A., Serna, F., Garcia, F. C., & García, J. M. (2015). Acrylic polymers with pendant phenylboronic acid moieties as “turn-off” and “turn-on” fluorescence solid sensors for detection of dopamine, glucose, and fructose in water. ACS Macro Letters, 4(9), 979-983.
[161] Qian, C. G., Zhu, S., Feng, P. J., Chen, Y. L., Yu, J. C., Tang, X., ... & Shen, Q. D. (2015). Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of zebrafish larvae. ACS applied materials & interfaces, 7(33), 18581-18589.
[162] Zhang, X., Zhu, Y., Li, X., Guo, X., Zhang, B., Jia, X., & Dai, B. (2016). A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction. Analytica chimica acta, 944, 51-56.
[163] Baluta, S., Malecha, K., Zając, D., Sołoducho, J., & Cabaj, J. (2017). Dopamine sensing with fluorescence strategy based on low temperature co-fired ceramic technology modified with conducting polymers. Sensors and Actuators B: Chemical, 252, 803-812.
[164] Zhao, X., Cui, Y., He, Y., Wang, S., & Wang, J. (2020). Synthesis of Multi-mode Quantum Dots Encoded Molecularly Imprinted Polymers Microspheres and Application in Quantitative Detection for Dopamine. Sensors and Actuators B: Chemical, 304, 127265.
[165] Jiang, K., Wang, Y., Thakur, G., Kotsuchibashi, Y., Naicker, S., Narain, R., & Thundat, T. (2017). Rapid and highly sensitive detection of dopamine using conjugated oxaborole-based polymer and glycopolymer systems. ACS applied materials & interfaces, 9(18), 15225-15231.
[166] Park, S. J., Lee, S. H., Yang, H., Park, C. S., Lee, C. S., Kwon, O. S., ... & Jang, J. (2016). Human dopamine receptor-conjugated multidimensional conducting polymer nanofiber membrane for dopamine detection. ACS applied materials & interfaces, 8(42), 28897-28903.
[167] Casadio, S., Lowdon, J. W., Betlem, K., Ueta, J. T., Foster, C. W., Cleij, T. J., ... & Peeters, M. (2017). Development of a novel flexible polymer-based biosensor platform for the thermal detection of noradrenaline in aqueous solutions. Chemical Engineering Journal, 315, 459-468.
[168] Chen, C., Zou, C., Li, L., Yu, H., Zhu, J., Liu, J., & Huang, W. (2020). Blue and green emission-transformed fluorescent copolymer: Specific detection of levodopa of anti-Parkinson drug in human serum. Talanta, 120817.
[169] Zhao, J., Bao, X., Wang, S., Lu, S., Sun, J., & Yang, X. (2017). In situ fluorogenic and chromogenic reactions for the sensitive dual-readout assay of tyrosinase activity. Analytical chemistry, 89(19), 10529-10536.
[170] Kajisa, T., Li, W., & Michinobu, T. (2018). Catecholamine Detection Using a Functionalized Poly (l-dopa)-Coated Gate Field-Effect Transistor. ACS omega, 3(6), 6719-6727.
[171]  Iacomino, M., Alfieri, M. L., Crescenzi, O., d’Ischia, M., & Napolitano, A. (2019). Unimolecular variant of the fluorescence turn-on oxidative coupling of catecholamines with resorcinols. ACS Omega, 4(1), 1541-1548.
[172] Kajisa, T., Li, W., Michinobu, T., & Sakata, T. (2018). Well-designed dopamine-imprinted polymer interface for selective and quantitative dopamine detection among catecholamines using a potentiometric biosensor. Biosensors and Bioelectronics, 117, 810-817.
[173] Chibac, A. L., Melinte, V., Buruiana, T., & Buruiana, E. C. (2017). Fluorescent polymeric sensors containing boronic acid derivatives for sugars and dopamine detection. Sensing characteristics enhancement by Au NPs. Sensors and Actuators B: Chemical, 253, 987-998.
[174] Wang, L., Su, D., Berry, S. N., Lee, J., & Chang, Y. T. (2017). A new approach for turn-on fluorescence sensing of l-DOPA. Chemical Communications, 53(92), 12465-12468.
[175] Moslehipour, A., Bigdeli, A., Ghasemi, F., & Hormozi-Nezhad, M. R. (2019). Design of a ratiometric fluorescence nanoprobe to detect plasma levels of levodopa. Microchemical Journal, 148, 591-596.
[176] Kruss, S., Landry, M. P., Vander Ende, E., Lima, B. M., Reuel, N. F., Zhang, J., ... & Strano, M. (2014). Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. Journal of the American Chemical Society, 136(2), 713-724.
[177] Mann, F. A., Herrmann, N., Meyer, D., & Kruss, S. (2017). Tuning selectivity of fluorescent carbon nanotube-based neurotransmitter sensors. Sensors, 17(7), 1521.
[178] Kruss, S., Salem, D. P., Vuković, L., Lima, B., Vander Ende, E., Boyden, E. S., & Strano, M. S. (2017). High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proceedings of the National Academy of Sciences, 114(8), 1789-1794.
[179] He, Q., Sudibya, H. G., Yin, Z., Wu, S., Li, H., Boey, F., ... & Zhang, H. (2010). Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. Acs Nano, 4(6), 3201-3208.
[180] Beyene, A. G., Alizadehmojarad, A. A., Dorlhiac, G., Goh, N., Streets, A. M., Král, P., ... & Landry, M. P. (2018). Ultralarge modulation of fluorescence by neuromodulators in carbon nanotubes functionalized with self-assembled oligonucleotide rings. Nano letters, 18(11), 6995-7003.
[181] Sudibya, H. G., Ma, J., Dong, X., Ng, S., Li, L. J., Liu, X. W., & Chen, P. (2009). Interfacing glycosylated carbon‐nanotube‐network devices with living cells to detect dynamic secretion of biomolecules. Angewandte Chemie International Edition, 48(15), 2723-2726.
[182] Casella, I. G., Gioia, D., & Rutilo, M. (2018). A multi-walled carbon nanotubes/cellulose acetate composite electrode (MWCNT/CA) as sensing probe for the amperometric determination of some catecholamines. Sensors and Actuators B: Chemical, 255, 3533-3540.
[183] Chen, J. L., Yan, X. P., Meng, K., & Wang, S. F. (2011). Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. Analytical chemistry, 83(22), 8787-8793.
[184] Jeon, S. J., Kwak, S. Y., Yim, D., Ju, J. M., & Kim, J. H. (2014). Chemically-modulated photoluminescence of graphene oxide for selective detection of neurotransmitter by “turn-on” response. Journal of the American Chemical Society, 136(31), 10842-10845.
[185] Yuan, D., Chen, S., Yuan, R., Zhang, J., & Liu, X. (2014). An ECL sensor for dopamine using reduced graphene oxide/multiwall carbon nanotubes/gold nanoparticles. Sensors and Actuators B: Chemical, 191, 415-420.
[186] Baluta, S., Cabaj, J. O. A. N. N. A., & Malecha, K. A. R. O. L. (2017). Neurotransmitters detection using a fluorescence-based sensor with graphene quantum dots. Optica Applicata, 47(2).
[187] Zhu, S., Yan, X., Qiu, J., Sun, J., & Zhao, X. E. (2020). Turn-on fluorescent assay for antioxidants based on their inhibiting polymerization of dopamine on graphene quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 225, 117516.
[188] Jeon, S. J., Choi, C., Ju, J. M., Lee, S., Park, J. H., & Kim, J. H. (2019). Tuning the response selectivity of graphene oxide fluorescence by organometallic complexation for neurotransmitter detection. Nanoscale, 11(12), 5254-5264.
[189] Ye, H., Wang, H., Zhang, B., Zhao, F., & Zeng, B. (2018). Tremella-like ZnIn2S4/graphene composite based photoelectrochemical sensor for sensitive detection of dopamine. Talanta, 186, 459-466.
[190] Kaya, Murat, and Mürvet Volkan. (2012). New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid. Analytical chemistry, 84, no. 18 7729-7735.
[191] Moody, A. S., & Sharma, B. (2018). Multi-metal, multi-wavelength surface-enhanced raman spectroscopy detection of neurotransmitters. ACS chemical neuroscience, 9(6), 1380-1387.