Scopus, ISC, J-Gate, CAS

Document Type : Short Review Article


1 Department of Science Technology, Federal Polytechnic, Ado-Ekiti, Nigeria

2 Department of Agricultural Technology, Federal Polytechnic, Ado-Ekiti, Nigeria



Plant-mediated synthesis of iron oxide nanoparticles has been increasingly drawing attention due to its eco-friendly nature and cost effectiveness. The biosynthesis technique engages plant secondary metabolites such as alkaloids, flavonoids, saponins, phenols, proteins, carbohydrates, glycosides, quinine, steroids, and tannins as reducers and/or stabilizers in the process of forming nanoparticles thereby replacing hazardous chemicals known with physical and chemical methods of nanomaterial synthesis. Biosynthesis method of nano particles has helped to a great extent to overcome some drawbacks, such as high energy and space requirement as well as high cost and hazard associated with various known physical and chemical methods. This work reviewed the biosynthesis of plant mediated iron oxide nanoparticles and their applications in water and wastewater treatment. Much work has been done to explore the effective, safe and cheap method for the dye removal in recent years. However, in future, more methods need to be explored to study and check the removal of dyes from wastewater using plant-mediated iron oxide nanoparticles for safer, cheaper and more efficient performance.

Graphical Abstract

Plant-Mediated Iron Nanoparticles and their Applications as Adsorbents for Water Treatment–A Review


[1] Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry10, S1445-S1451.
[2] Auta, M., & Hameed, B. H. (2011). Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye. Chemical Engineering Journal171(2), 502-509.
[3] Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S., & Sikarwar, S. (2012). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering: C32(1), 12-17.
[4] Gouamid, M., Ouahrani, M. R., & Bensaci, M. B. (2013). Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using date palm leaves. Energy procedia36, 898-907.
[5] Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource technology77(3), 247-255.
[6]  Abegunde, S. M., Adejuwon, O. M., & Olorunfemi, T. O. (2017). Safety assessment of hand-dug well water samples from selected towns in Ekiti State, Nigeria. Journal of Advanced Research In Applied Chemistry & Chemical Engineering4(1&2), 40-45.
[7] Abegunde, S. M., Akinyele, S. A., & Awonyemi, I. O. (2018). Effect of cassava whey on the physicochemical parameters and heavy metals distribution in soil. Turkish Journal of Agriculture-Food Science and Technology6(9), 1196-1199.
[8] Bello, O. S., Adegoke, K. A., & Akinyunni, O. O. (2017). Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Applied Water Science7(3), 1295-1305.
[9] Banerjee, S., & Chattopadhyaya, M. C. (2017). Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry10, S1629-S1638.
[10] Hameed, K. S., Muthirulan, P., & Sundaram, M. M. (2017). Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: equilibrium and kinetics studies. Arabian Journal of Chemistry10, S2225-S2233.
[11] Hajati, S., Ghaedi, M., Karimi, F., Barazesh, B., Sahraei, R., & Daneshfar, A. (2014). Competitive adsorption of Direct Yellow 12 and Reactive Orange 12 on ZnS: Mn nanoparticles loaded on activated carbon as novel adsorbent. Journal of Industrial and Engineering Chemistry20(2), 564-571.
[12] Abegunde, S. M., Oyebanji, A. O., & Osibanjo, O. (2018). Evaluation of Digestion Procedures on Heavy Metals in Soil of a Dumpsite in Ibadan, South-western Nigeria. Suan Sunandha Science and Technology Journal, 5(2), 1–5.
[13] Behnajady, M. A., Modirshahla, N., & Ghanbary, F. (2007). A kinetic model for the decolorization of CI Acid Yellow 23 by Fenton process. Journal of Hazardous Materials148(1-2), 98-102.
[14] Saravanan, R., Sacari, E., Gracia, F., Khan, M. M., Mosquera, E., & Gupta, V. K. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of molecular liquids221, 1029-1033.
[15] Gupta, V. K., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal180, 81-90.
[16] Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011). Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering: C31(5), 1062-1067.
[17] Saleh, T. A., & Gupta, V. K. (2012). Column with CNT/magnesium oxide composite for lead (II) removal from water. Environmental Science and Pollution Research19(4), 1224-1228.
[18] Saravanan, R., Gracia, F., Khan, M. M., Poornima, V., Gupta, V. K., Narayanan, V., & Stephen, A. (2015). ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. Journal of molecular liquids209, 374-380.
[19] Saravanan, R., Gupta, V. K., Mosquera, E., & Gracia, F. (2014). Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. Journal of Molecular Liquids198, 409-412.
[20] Abbasi, M., & Asl, N. R. (2008). Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2. Journal of hazardous materials153(3), 942-947.
[21] García-Montaño, J., Ruiz, N., Munoz, I., Domenech, X., García-Hortal, J. A., Torrades, F., & Peral, J. (2006). Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal. Journal of hazardous materials138(2), 218-225.
[22] Saleh, T. A., & Gupta, V. K. (2012). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. Journal of colloid and interface science371(1), 101-106.
[23] Lorenc-Grabowska, E., & Gryglewicz, G. (2007). Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes and pigments74(1), 34-40.
[24] Malik, P. K., & Sanyal, S. K. (2004). Kinetics of decolourisation of azo dyes in wastewater by UV/H2O2 process. Separation and Purification Technology36(3), 167-175.
[25] Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dyecontaining effluents: a review. Bioresource technology58(3), 217-227.
[26] Malik, P. K., & Saha, S. K. (2003). Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and purification technology31(3), 241-250.
[27] Asfaram, A., Ghaedi, M., Hajati, S., Goudarzi, A., & Dil, E. A. (2017). Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded activated carbon. Ultrasonics sonochemistry34, 1-12.
[28] Dil, E. A., Ghaedi, M., Asfaram, A., Hajati, S., Mehrabi, F., & Goudarzi, A. (2017). Preparation of nanomaterials for the ultrasound-enhanced removal of Pb2+ ions and malachite green dye: chemometric optimization and modeling. Ultrasonics Sonochemistry34, 677-691.
[29] Ghaedi, M., Khafri, H. Z., Asfaram, A., & Goudarzi, A. (2016). Response surface methodology approach for optimization of adsorption of Janus Green B from aqueous solution onto ZnO/Zn (OH) 2-NP-AC: kinetic and isotherm study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy152, 233-240.
[30] Mazaheri, H., Ghaedi, M., Asfaram, A., & Hajati, S. (2016). Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: using ultrasound power and optimization by central composite design. Journal of Molecular Liquids219, 667-676.
[31] Mittal, A., Kaur, D., Malviya, A., Mittal, J., & Gupta, V. K. (2009). Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. Journal of colloid and interface science337(2), 345-354.
[32] Mittal, A., Mittal, J., Malviya, A., & Gupta, V. K. (2009). Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. Journal of colloid and interface science340(1), 16-26.
[33] Jain, A. K., Gupta, V. K., Bhatnagar, A., & Suhas. (2003). A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Separation Science and Technology38(2), 463-481.
[34] Olasehinde, E. F. & Abegunde S,. M. (2019). Preparation and characterization of a new adsorbent from raphia taedigera seed.Journal of Research on Engineering Structures and Materials, doi:10.17515/resm2019.139ma0713 (online first)
[35] Slejko, F. L. (Ed.). (1985). Adsorption technology: a step-by-step approach to process evaluation and application (pp. 1-6). M. Dekker.
[36] Rosarin, F. S., & Mirunalini, S. (2011). Nobel metallic nanoparticles with novel biomedical properties. J Bioanal Biomed3(4), 085-091.
[37] Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters2(1), 32.
[38] Albrecht, M. A., Evans, C. W., & Raston, C. L. (2006). Green chemistry and the health implications of nanoparticles. Green chemistry8(5), 417-432.
[39] Khalil, K. A., Fouad, H., Elsarnagawy, T., & Almajhdi, F. N. (2013). Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci8(3), 3483-3493.
[40] Athar, M., & Das, A. J. (2014). Therapeutic nanoparticles: State-of-the-art of nanomedicine. Advanced Material Reviews, 1(1), 25-37.
[41] Meyer, A., Eskandari, S., Grallath, S., & Rentsch, D. (2006). AtGAT1, a high affinity transporter for γ-aminobutyric acid in Arabidopsis thaliana. Journal of biological chemistry281(11), 7197-7204.
[42] Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., ... & Sastry, M. (2001). Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie International Edition40(19), 3585-3588.
[43] Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine6(2), 257-262.
[44] Shahwan, T., Sirriah, S. A., Nairat, M., Boyacı, E., Eroğlu, A. E., Scott, T. B., & Hallam, K. R. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal172(1), 258-266.
[45] Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of the total environment466, 210-213.
[46] Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi journal of biological sciences21(6), 605-609.
[47] Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of the Total Environment445, 1-8.
[48] Smuleac, V., Varma, R., Sikdar, S., & Bhattacharyya, D. (2011). Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. Journal of membrane science379(1-2), 131-137.
[49] Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., & Jose-Yacaman, M. (2003). Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir19(4), 1357-1361.
[50] Park, S., Kim, W., Tian, G., Gygi, S. P., & Finley, D. (2011). Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. Journal of Biological Chemistry286(42), 36652-36666.
[51] Mehmood, A., Murtaza, G., Bhatti, T. M., Raffi, M., & Kausar, R. (2014). Antibacterial efficacy of silver nanoparticles synthesized by a green method using bark extract of Melia azedarach L. Journal of Pharmaceutical Innovation9(3), 238-245.
[52] Kumar, B., Angulo, Y., Smita, K., Cumbal, L., & Debut, A. (2016). Capuli cherry-mediated green synthesis of silver nanoparticles under white solar and blue LED light. Particuology24, 123-128.
[53] Kumar, B., Smita, K., Cumbal, L., & Angulo, Y. (2015). Fabrication of silver nanoplates using Nephelium lappaceum (Rambutan) peel: a sustainable approach. Journal of Molecular Liquids211, 476-480.
[54] Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: an ecofriendly approach. Industrial Crops and Products58, 238-243.
[55] Shameli, K., Ahmad, M. B., Zamanian, A., Sangpour, P., Shabanzadeh, P., Abdollahi, Y. & Zarga,r M. (2012). Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. International journal of nanomedicine, 7, 5603–5610.
[56] Önal, E. S., Yatkin, T., Ergüt, M., & Özer, A. (2017). Green synthesis of iron nanoparticles by aqueous extract of Eriobotrya japonica leaves as a heterogeneous fenton-like catalyst: degradation of basic red 46. Int J Chem Eng Appl8, 327-333.
[57] Abbasi, M., Saeed, F., & Rafique, U. (2014). Preparation of silver nanoparticles from synthetic and natural sources: remediation model for PAHs. In IOP Conference Series: Materials Science and Engineering, 60(1), 012061.
[58] Bhupendra, P. & Pooja, S. (2019). Adsorption Study of Green Synthesized Fe-Oxide Nanoparticle for DDT Removal. International Journal of Pharmaceutical Sciences Review and Research, 55(2), 84–90.
[59] Wei, X., Luo, M., Li, W., Yang, L., Liang, X., Xu, L., ... & Liu, H. (2012). Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresource technology103(1), 273-278.
[60] Ehrampoush, M. H., Miria, M., Salmani, M. H., & Mahvi, A. H. (2015). Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Health Science and Engineering13(1), 84.
[61] Ghaedi, M., Ansari, A., Habibi, M. H., & Asghari, A. R. (2014). Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study. Journal of Industrial and Engineering Chemistry20(1), 17-28.
[62] Madiha, B., Zahid. Q.& Aliya, B. (2018). Removal of Melachite Green Dye by Using Zinc Oxide Prepared by The Green Synthesis by Using Camellia Sinensis (Green Tea) Leafs Extract. Archives of Nanomedicine: Open Access Journal, 1(4), 000120.
[63] Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E. & Stone, M. O. (2002). Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials, 1(3), 169-172.
[64] Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine6(1), 103-109.
[65] Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research13(7), 2981-2988.
[66] Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Duran, N., & Rai, M. K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy2(3), 243-247.
[67] Ouda, S. M. (2014). Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Research Journal of Microbiology9(1), 34-42.
[68] Pirtarighat, S., Ghannadnia, M., & Baghshahi, S. (2019). Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry9(1), 1-9.
[69] Jirovetz, L., Buchbauer, G., Shafi, M. P., & Leela, N. K. (2003). Analysis of the essential oils of the leaves, stems, rhizomes and roots of the medicinal plant Alpinia galanga from southern India. ACTA PHARMACEUTICA-ZAGREB-53(2), 73-82.
[70] Abegunde, S. M. (2018). Proximate composition, phytochemical analysis and elemental characterization of Raphia taedigera Seed. Asian Journal of Chemical Sciences, 1-8.
[71] Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnology progress22(2), 577-583.
[72] Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. J. C. S. B. B. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces76(1), 50-56.
[73] Da’na, E., Taha, A., & Afkar, E. (2018). Green synthesis of iron nanoparticles by acacia nilotica pods extract and its catalytic, adsorption, and antibacterial activities. Applied Sciences8(10), 1922.
[74] Raju, C. A. I., Bharadwaj, M. S., Prem, K., & Satyanandam, K. (2016). Green synthesis of iron nanoparticles using Albizia lebbeck leaves for synthetic dyes decolorization. Int. J. Sci. Eng. Technol. Res5(12), 3429-3434.
[75] Nithya, K., Sathish, A., Kumar, P. S., & Ramachandran, T. (2018). Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni (II) ions. Journal of industrial and engineering chemistry59, 230-241.
[76] Devatha, C. P., Thalla, A. K., & Katte, S. Y. (2016). Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. Journal of cleaner production139, 1425-1435.
[77] Huang, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy117, 801-804.
[78] Ramesh, A. V., Rama Devi, D., Mohan Botsa, S., & Basavaiah, K. (2018). Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. Journal of Asian Ceramic Societies6(2), 145-155.
[79] Hoag, G. H., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N. & Varma, R. S. (2009). Degradation of bromothymol blue by greener nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671–8677.
[80] Zielinsk,a A., Skwarek, E. & Zaleska, A. (2019). Synthesis of Silver Nanoparticles Using Aqueous Extract of Medicinal Plants (Impatiens balsamina and Lantana camara) Fresh Leaves and Analysis of Antimicrobial Activity. International Journal of Microbiology. 2019, 1-8.
[81] Stefaniak, A. B. (2017). Principal Metrics and Instrumentation for Characterization of Engineered Nanomaterials. In Mansfield, Elisabeth; Kaiser, Debra L.; Fujita, Daisuke; Van de Voorde, Marcel (eds.). Metrology and Standardization of Nanotechnology, Wiley-VCH Verlag. 2017, 151–174.
[82] Hassellöv, M., Readman, J. W., Ranville, J. F. & Tiede, K. (2008). Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology, 17(5), 344-61.
[83] Powers, K. W., Palazuelos, M., Moudgil, B. M. & Roberts, S. M. (2007). Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology. 1, 42–51.
[84] Powers, K. W., Brown, S. C., Krishna, V. B., Wasdo, S. C., Moudgil, B. M., & Roberts, S. M. (2006). Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences90(2), 296-303..
[85] Akbari, B., Tavandashti, M. P., & Zandrahimi, M. (2011). Particle size characterization of nanoparticles–a practicalapproach. Iranian Journal of Materials Science and Engineering8(2), 48-56.
[86] Klaessig, F., Marrapese, M. & Abe, S. (2011). Nanotechnology Standards. Nanostructure Science and Technology. Springer, New York, NY, 2011, 21–52.
[87] Can, M. M., Coskun, M. & Firat, T.(2012). A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (c-Fe2O3) and hematite (a-Fe2O3), using ferromagnetic resonance, Journal of Alloys and Compounds, 542, 241–247.
[88] Belin, T., Guigue-Millot, N., Caillot, T., Aymes, D., & Niepce, J. C. (2002). Influence of Grain Size, Oxygen Stoichiometry, and Synthesis Conditions on the g-Fe2O3 Vacancies Ordering and Lattice Parameters. Journal of Solid State Chemistry163(2), 459-465.
[89] Navrotsky, A., Mazeina, L., & Majzlan, J. (2008). Size-driven structural and thermodynamic complexity in iron oxides. Science319(5870), 1635-1638.
[90] Morales, M. P., Serna, C. J., Bødker, F., & Mørup, S. (1997). Spin canting due to structural disorder in maghemite. Journal of Physics: Condensed Matter9(25), 5461–5467.
[91] Onal, E. S., Tolga, Y. A., Memduh,a E. & Ayla, O. (2019). Biosynthesis and Characterization of Iron Nanoparticles for Effective Adsorption of Cr(VI). International Journal of Chemical Engineering, 2019, 1-13.
[92] Mohapatra, M., & Anand, S. (2010). Synthesis and applications of nano-structured iron oxides/hydroxides–a review. International Journal of Engineering, Science and Technology2(8).
[93] Hiemstra, T., Rahnemaie, R., & van Riemsdijk, W. H. (2004). Surface complexation of carbonate on goethite: IR spectroscopy, structure and charge distribution. Journal of Colloid and Interface Science278(2), 282-290.
[94] Hasany, S. F., Ahmed, I., Rajan, J., & Rehman, A. (2012). Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol2(6), 148-158.
[95] LaMer, V. K., & Dinegar, R. H. (1950). Theory, production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society72(11), 4847-4854.
[96] Lee, J. H., Huh, Y. M., Jun, Y. W., Seo, J. W., Jang, J. T., Song, H. T., ... & Cheon, J. (2007). Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature medicine13(1), 95-99.
[97] Rossi, L. M., Costa, N. J., Silva, F. P., & Wojcieszak, R. (2014). Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chemistry16(6), 2906-2933.