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Abstract:  
Organic pollutants are the largest kind of pollutants released into waters and wastewater from the some industry 

and industrial processes. Photocatalytic degradation is one of the significant and effective methods to remove 

the dyes and other organic pollutant from water and wastewater. This mini-review presents the application of 

zinc ferrites and ZnFe2O4-based composites in the photocatalytic degradation of organic dye. The zinc ferrite 

nanomaterials are obtained mainly by thermal methods, sol-gel, co-precipitation, and solid-state or 

hydrothermal route. Zinc Ferrites have good photocatalytic activity, but when exploited as composite 

photocatalysts, their photocatalytic efficiency were increased. AS a critical magnetic material, the ZnFe2O4 

spinel structure has been proven to be useful in removal dye, ZnFe2O4 have photocatalytic activity under visible 

light irradiation. However, it is possible to improve the efficiency of photocatalysis activity of ZnFe2O4 by 

coupling it with another semiconductor or coupling it with carbon nanotubes and graphene, resulting in 

enhanced photocatalytic performance. 
 DOI: 10.33945/SAMI/JCR.2020.2.2 
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1. Introduction 

Colors are used in large amounts in a multitude of 

industries to color the products. In reality, the art of 

using color for cloth has been known to people since 

3500 BC. Color is the fundamental attraction of any 

fabric. WH Perkins, in 1856, discovered the use of 

synthetic color. However, their harmful nature has 

become a cause of grave concern to conservationist. 

The use of synthetic color harms all forms of life. Many 

colors are poisonous with doubtful mutagenic 

carcinogenic and carcinogenic effects that influence 

humans and aquatic biota. Today, more data on the 

environmental consequences of dyestuff application 

has become available, and the dye makers, gainer, and 

government themselves are taking substantial to cure 

the dye-containing wastewaters [1-15]. 

The different methods used to remove the dye, started 

just with some physical treatments such as equalization 

and sedimentation to maintain the total suspended 

solids (TSS), total dissolved solids (TDS), and pH of 

the discharged water. Other treatments, such as the use 

of biodegradation or filter and other, the innovation of 

the activated sludge process (aerobic biodegradation), 

were applied to treat the dye wastewater. The different 

methods used to remove the dye. Inorganic materials 

used as adsorbents in dye removal: clays, metal oxides, 

nanoparticles, and minerals are used as adsorbents. 

Photocatalytic degradation of organic pollutants is 

becoming one of the useful promising green chemistry 

technologies. Also, today utilization and demand for 

photo-catalysts can be great for environment pollution 

monitoring [16-25]. The use of photocatalytic 

wastewater treatment has many advantages, among 

which can be mention to degrade pollutants 

completely. In the beneficial usage of therapy of 

wastewater using photocatalyst, researchers found a 

considerable problem. Separation of photocatalyst 

compound from wastewater and water was hard, high-

cost and time-consuming. Among photocatalysis, 

magnetic nanoparticles have distinctive advantages; 

the most important is the possibility of separating after 

photocatalysis is the process by using an external 

magnetic field. Iron oxide nanoparticles have attracted 

the researcher’s attention due to their excellent 

magnetic properties and easy magnetic separation of 

solids after adsorption, high surface area, high 

adsorption capacity, nanoparticle size, and great 

biocompatibility photocatalysis. Also, the iron 
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nanoparticles are very efficient to remove a wide 

variety of inorganic and organic contaminants [26-29].  

The transfer can be active in removing the pollutants 

from the surroundings, however, additional treatment 

and/or disposal of the waste products ultimately is 

required for complete removal the main advantage of 

this method is functional degradation of organic 

pollutants to CO2 and H2O and inorganic constituents 

with solar energy as an endless energy source [30-32]. 

Various methods have been employed for improving 

the photocatalytic activity of semiconductors, such as 

metal composite, non-metal composite, and 

heterojunctions. Heterojunctions are one of these 

effective ways and divided to four main groups [33-

35]. 

1. Multicomponent semiconductors 

2. Semiconductor-carbon group (S-C) (grapheme, 

CNT, graphite) 

3. Semiconductor-metal (S-M) 

4. Semiconductor-semiconductor (S-S). 

2. Synthesis Zinc Ferrites 

Different methods reported to prepare Zinc ferrites, 

containing thermal methods, sol-gel, co-precipitation, 

and many others. 

2.1. Co-precipitation Method 

Co-precipitation procedure for synthesis of zinc ferrites 

is similar to thermal methods. Fe(III) and zinc salt are 

dissolved in water along with oleic acid, surfactant, 

under stirring and gentle heating. The pH is enhanced 

to 7–10 to precipitate the zinc ferrite particles. The 

obtained nanoparticles are filtered and washed with 

distilled water and ethanol, then dried at oven. Once 

dried, the nanoparticles can then be calcined at 

different temperatures to specify the impact of the 

temperature on the activity of the samples. [36-38] 

2.2. Sol-gel Methods 

 The term ‘sol-gel’ is used for a diverse range of 

chemistries involve the addition of the metal and iron 

precursors, along with citric acid, to create a gel. Sol-

gel and citrate methods require the addition of the zinc 

and iron precursors, along with citric acid or another 

gel, to create a gel. The precursors are dissolved in 

water or ethanol and stirred vigorously at a specified 

pH until a gel-like material is developed. The gel is 

dried and then sintered at determined temperatures at 

different periods. The sintering time usually is varied 

and tested to determine the effects on the photocatalytic 

activity [39-58]. 

2.3. Hydrothermal method 

Hydrothermal synthesis contains the numerous 

techniques of crystallizing substances from high-

temperature aqueous solutions at high vapor pressures. 

The benefits of the hydrothermal technique over other 

kinds of crystal growth contain the ability to form 

crystalline phases that are not stable at the melting 

point. Also, materials that have a high vapor pressure 

near their melting points can be grown by the 

hydrothermal method. This method is also particularly 

appropriate for the growth of large good-quality 

crystals while maintaining control over their 

composition. The grain size of the powder growths 

with the time and temperature of hydrothermal 

treatment. [59-61]    

2.4. Solvothermal Method 

Solvothermal synthesis is the effective methods used to 

produce magnetic zinc ferrite. This method  similar to 

the hydrothermal route (where the synthesis is 

conducted in a stainless steel autoclave), the only 

difference being that the precursor solution is usually 

not aqueous in compared with the conventional 

hydrothermal technique, solvothermal synthesis shows 

better effects on dispersed nanoparticles in a recent 

study in 2017 by Guangshuo Wang et al. zinc ferrite 

(ZnFe2O4) nanocrystal clusters were synthesized 

successfully with a surfactant-assistant solvothermal 

method and investigated as a potential 

magnetorheological material. It was found that the 

ZnFe2O4 nanocrystal clusters showed a definite shape 

and homogeneous dispersion, as well as improved 

sedimentation stability. [62-64]  

2.5. Microemulsion Method 

The word microemulsion was proposed initially by 

Schulman et al. (1959). The microemulsion method to 

be one of the versatile preparation methods which 

enable to control the particle properties such as 

mechanisms of particle size control, morphology, 

geometry, homogeneity, and surface area. A report by 

R. D. K. Misra and et al. described this technique to 

produce nanocrystalline zinc ferrites with a narrow size 

distribution. In general, this potential method is based 

on the synthesis of zinc ferrite in a controlled 

environment using conditions that were reported 

generated in water in oil microemulsion. The technique 

permits reasonable control of particle size distribution 

and non-aggregated products. [65-67] 

3. Photocatalysts 

ZnFe2O4 as a magnetic material whit the spinel 

structure, has been proven to be useful in many 

applications such as dye removal. According to its 

visible-light response, excellent photochemical 

stability, and low cost. ZnFe2O4 has attracted 

considerable attention in the conversion of solar energy 

and photochemical hydrogen production from water. 

Also, the ZnFe2O4 magnetic particles possessed 
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intrinsic peroxidase-like activity, which could react 

with H2O2 to produce •OH. Zinc ferrite is one of the 

most important ferrites. ZnFe2O4 nanoparticles have a 

significant photo-response in the visible light region 

(1.92 eV) with excellent photochemical stability, 

suggesting their potential uses as the gas sensors and 

photocatalysts [16,68]. Photooxidation and 

photoreduction refer to the initiation of oxidation and 

reduction reactions by light energy. When irradiated 

with light energy, an electron (e-) is excited from the 

valence band (VB) to the conduction band (CB) of the 

photocatalyst, leaving a photogenerated hole (h+) 

photogenerated electron and holes are capable of 

oxidizing/reducing adsorbed substrates. The ZnFe2O4 

NPs promote a photocatalytic reaction by acting as 

mediators for the charge transfer between two adsorbed 

molecules advises in the first, charge transfer at the 

semiconductor–electrolyte interface follows bandgap 

excitation of a semiconductor nanoparticle. In the latter 

case,  the semiconductor nanoparticle quenches the 

excited state by accepting an electron, and either 

transferring the charge to another substrate or 

generating photocurrent [60]. In both cases, the 

semiconductor sensitizer remains, thus it is described 

as photocatalytic. 

The mechanism which is suggested for photocatalyst 

reaction in the presence zinc ferrite is that the potential 

of ZnFe2O4 to oxidize pollutants in the system is based 

on the hypothesis, which is presented by Minhua Su et 

al. [69]. A schematic of the reaction mechanism is 

depicted in Figure 1, forming holes and electrons by 

absorbing the photons. 

 

 

Oxidation of water holes 

 

Oxidation of hydroxyl ions by hole 

 

Oxygen reduction by electron 

 

The reaction of hydroxyl radicals created with the dye 

 

 

 

 

 Fe(III) on the surface of ZnFe2O4 can initiate reactions 

which produce OH• radicals by the fenton reaction. 

 

 

 

 

The valence band edge of ZnFe2O4 is located at ca. 0.38 

eV vs. SCE while the conduction band is at −1.54 eV 

vs. SCE. In the presence of light, holes (hvb) are 

produced, which can oxidize pollutant molecules. 

Holes may also oxidize water to form •OH. 

 

 Importantly, H2O2 in the system can capture electrons, 

thus diminishing the recombination of holes and 

electrons, which can enhance the photocatalytic 

performance of ZnFe2O4 in the presence of H2O2 and 

visible light. Furthermore, the capturing of electrons 

produces •OH radical. 

 

The combined effects of there are thus expected to 

enhance the degradation of pollutants. [70,71] 

 
Figure 1. Mechanism of photodegradation of dye by ZnFe2O4 NPs 

4. Coupling two Semiconductor Systems 

ZnFe2O4 is a magnetic semiconductor material. 

Therefore, ZnFe2O4-based composites particularly 

afford a potential benefit for repeated magnetic 

separation purposes. 

Many nanoparticles, discovered by chemists (such as 

ZnO and β-AgVO3) are considered as a significant 

breakthrough in the field of visible-light-driven 

photocatalysts and removal dye more accurately, their 

shows an extremely high quantum efficiency of 

approximately in water oxidation with the mater as a 

scavenger. However, as there are light-sensitive and 

slightly soluble in aqueous solution, it will be 

decomposed dye to during the photocatalytic reaction 

process without any sacrificial electron acceptor. This 

process not only destroys the structure of nanoparticles, 

but also can reduce its light absorption efficiency, 

inevitably influencing its photocatalytic activity and 

stability [72; 73]. So, it is possible to improve the 

effectiveness of the photoinduced charge separation in 

ZnFe2O4 by coupling it with another semiconductor, 

resulting in enhanced photocatalytic performance. 

Electrons photo induced on the conduction band of a  
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Table 1.  Dye degradation by zinc ferrite nanoparticles 

Entry Catalyst Method synthesis 
Dye 

(mg/L) 

Amount of Catalyst 

(g/L) 
Irradiation source 

Irradiation 

time (min) 

Degradation 

(%) 
Dye Ref. 

1 ZnFe2O4 Sol-gel method 25 5 > 400 nm 240 4 Methyl Orange [78] 

2 0.5μm 
Co-precipitation 

Calcined at 500 
10 4 > 400 nm 60 75 Methyl Orange [79] 

3 75)Thickness/nm) 
Sol–gel method 

 
12 1layer 200-700 nm 60 35 Methyl Orange [80] 

4 100 )Thickness/nm) Sol-gel method 12 2layers 200-700 nm 60 43 Methyl Orange [80] 

5 
100)Thickness/nm) 

Calcined at 350C. 
Sol-gel method 12 2layers 200-700 nm 60 15 Methyl Orange [80] 

6 
100)Thickness/nm) 

calcined at 400 C. 
Sol-gel method 12 2layers 200-700 nm 60 37 Methyl Orange [80] 

7 
100(Thickness/nm) 

Calcined at 450C. 
Sol-gel method 12 2layers 200-700 nm 60 39 Methyl Orange [80] 

8 
100)Thickness/nm) 

Calcined at 500C. 
Sol-gel method 12 2layers 200-700 nm 60 30 Methyl Orange [80] 

9 135)Thickness/nm) Sol-gel method 12 3 layers 200-700 nm 60 53 Methyl Orange [80] 

10 165)Thickness/nm) Sol-gel method 12 4 layers 200-700 nm 60 47 Methyl Orange [80] 

11 207 )Thickness/nm) Sol-gel method 12 5 layers 200-700 nm 60 37 Methyl Orange [80] 

13 

 

ZnFe2O4 

17.93 nm 

Solvothermal 

 
20 0.5 200-700 nm 120 93 Reactive Red 120 [51] 

14 
ZnFe2O4 

17.93 nm 
Solvothermal 20 1 200-700 nm 120 >95 Reactive Red 120 [51] 

15 
ZnFe2O4 

17.93 nm 
Solvothermal 20 1 Dark 120 95 Reactive Red 120 [51] 

16 
ZnFe2O4 + H2O2 

 
Sol-gel method 100 0.2 200–280  nm 60 >95 Reactive  Red 120 [81] 

17 ZnFe2O4 + H2O2 Sol-gel method 100 0.2 200–280  nm 60 100 Reactive  Red  198 [81] 

18 
Irradiation 

∼40 nm 
Microwave 10 0.6 400–700 nm 180 32 

Methylene Blue 

 
[82] 

19 
ZnFe2O4 

15nm 

Hydrothermal 

 
10 1 > 420  nm 360 8 

Methylene Blue 

 
[83] 

20 
ZnFe2O4 + H2O2 

15nm 
Hydrothermal 10 1 > 420 nm 360 52 Methylene Blue [83] 

http://www.worlddyevariety.com/reactive-dyes/reactive-red-120.html
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21 
ZnFe2O4 + H2O2 

15nm 

Hydrothermal 

 
10 10 Dark 360 45 Methylene Blue [83] 

22 ZnFe2O4  60 24 670 nm 60 70 Methylene Blue [84] 

23 ZnFe2O4 Co-precipitation 20 0.8 200–700 nm 300 38.4 Rhodamine B [85] 

24 bulk ZnFe2O4 
Colloid mill and 

hydrothermal 
20 0.5 254 360 45 Rhodamine B [85] 

25 
ZnFe2O4 +  H2O2 

200nm 
Solvothermal 20 0.5 553 120 30 Rhodamine B [86] 

26 
ZnFe2O4 

200nm 
Solvothermal 20 0.5 553 120 12 Rhodamine B [86] 

27 9 nm 
Colloid mill and 

hydrothermal 
20 0.5 254 360 95 Rhodamine B [87] 

28 14 nm 
Colloid mill and 

hydrothermal 
20 0.5 254 360 75 Rhodamine B [87] 

29 19 nm 
Colloid mill and 

hydrothermal 
20 0.5 254 360 60 Rhodamine B [87] 

30 9 nm 
Colloid mill and 

hydrothermal 
20 0.5 dark 360 0 Rhodamine B [87] 

31 10 nm 

Hydrothermal 

involving sodium 

oleate 

- 
- 

 
dark 120 0 Rhodamine B [88] 

32 10 nm Hydrothermal - - 300-700 nm 120 80 Rhodamine B [88] 

33 10 nm 

hydrothermal 

involving sodium 

oleate 

- - 300-700 nm 60 97 Rhodamine B [88] 

35 40-60 nm Precipitation 27 0.3 630nm 90 90 Toluidine Blue [89] 

36 40-60nm Precipitation 27 0.3 dark 90 0.5 Toluidine Blue [89] 

37 ZnFe2O4+H2O2 pre-heated electrical  40 0.03 Visible light 60 98 Malachite Green 
[90] 

 

38 
ZnFe2O4 

Size 75-105 nm 
Co-precipitation 10 0.05 Sunlight 50 99 Methyl Orange [91] 

39 
ZnFe2O4 

Size 9 nm 

Colloidal mill and 

hydrothermal 

method 

20 0.05 
72W Halogen 

Lamp 
360 97 Acid Oran Ge-II [87] 
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Table 2. Dye degradation by zinc ferrite nanocomposites. 

Entry Compound Method synthesis 
Dye 

(mg/L) 
Catalyst (g/L) Irradiation source 

Irradiation 

time (min) 
Degradation (%) Dye Ref. 

1 
ZnFe2O4/ZnO molar 

ratio 05%  

electrospinning and 

subsequent 

calcination process 

10 0.5 
solar irradiation 

500 W Xenon 
150 99% Rhodamine B [92] 

2 
β-AgVO3/ZnFe2O4 

size 20  and  35  nm 

reverse micelle 

system 
60 0.2 670 nm 60 >95 Methylene Blue [84] 

3 ZnO/ZnFe2O4+H2O2 co-precipitation 10 0.2 365 360 >95 Methyl Orange [93] 

4 ZnO/ZnFe2O4+H2O2 co-precipitation 10 0.2 380> 360 47 Methyl Orange [93] 

5 ZnO/ZnFe2O4+H2O2 co-precipitation 10 0.2 800under  NIR 360 68 Methyl Orange [93] 

6 
graphene oxide-

ZnFe2O4 
Hydrothermal 1.8 0.5 400 210 35 Malachite Green [94] 

7 
graphene oxide-

ZnFe2O4+H2O2 
Hydrothermal 1.8 0.5 400 210 >97 Malachite Green [94] 

8 
graphene oxide-

ZnFe2O4+H2O2 
Hydrothermal 1.8 0.5 dark 210 15 Malachite Green [94] 

9 ZnFe2O4/MWCNTs Hydrothermal 10 1 > 420 nm 360 25 Methylene Blue [83] 

10 
ZnFe2O4/MWCNTs + 

H2O2 
Hydrothermal 10 1 > 420 nm 360 99 Methylene Blue [83] 

11 
ZnFe2O4/MWCNTs + 

H2O2 
Hydrothermal 10 1 Dark 360 95 Methylene Blue [83] 

12 
ZnFe2O4/MWCNTs + 

H2O2 
Hydrothermal 10 1 > 420 nm 360 67 Methylene Blue [83] 

13 
ZnFe2O4/graphene + 

H2O2 
Solvothermal 20 0.5 553 120 100 Rhodamine B [86] 

14 
ZnFe2O4/graphene + 

H2O2 
Solvothermal 20 0.5 464 120 96 Methyl Orange [86] 

15 
ZnFe2O4/graphene + 

H2O2 
Solvothermal 20 0.5 664 120 100 Methylene Blue 

[86] 

 

16 
Meso-ZnFe2O4 + H2O2 

5-10 nm 

Hydrothermal 

 
100 0.5 >  400  nm 120 ≈100 

Acid  Orange  Ii  

(Aoii) 
[16] 

17 

graphene oxide-

ZnFe2O4+H2O2 

size 10  nm 

solvothermal 10 0.5 664 nm 120 99.23 Methylene Blue [95] 

18 
ZnO/ZnFe2O4 

Size 0.84nm 
Hydrothermal 10 0.5 750 nm 140 >94 Methyl Orange [96] 

19 
ZnO/ZnFe2O4 

Size 0.84nm 
Hydrothermal 10 0.05 750nm 70 >92 Malachite Green [97] 

20 
ZnFe2O4/ZnO 

Size 13 nm 
Co-Precipitation 20 0.05 500 360 98 Methylene Blue      [98] 

21 
ZnFe2O4/ZnO 

Size 13 nm 
Co-Precipitation 20 0.05 500 300 99 Methyl Orange [98] 

https://fa.wikipedia.org/wiki/%D8%AA%D9%82%D8%B1%DB%8C%D8%A8
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higher level semiconductor get injected into the lower 

level semiconductor’s conduction band. However, 

coupling semiconductors does not always increase 

photocatalysis by charge separation. They are usually 

determined by multitude of factors, including defect 

density, surface area, crystallinity, and quantum size 

effects. [26; 74-76] a schematic of the reaction 

mechanism is depicted in Figure 2.  

 
Figure 2. Schematic illustration of charge transfer in a coupled semiconductor 
system. 

Carbon nanotubes (CNTs) have a significant electron-

storage valence (one electron for every 32 carbon 

atoms) [26]. Photon-generated e - h+ pairs usually take  

about 10 -9s to  recombine, therefore they may accept 

photon-excited electrons in nanoclusters and thus 

retard or hinder  e-/h+ pair recombination [77]. In Figure 

3, schematic of the reaction mechanism reveals the 

reduced graphene oxide-ZnFe2O4 composite with high 

photocatalytic performance under visible light 

irradiation.  

 
Figure 3. The reduced graphene oxide-ZnFe2O4 composite which shows for the 
high photocatalytic performance under visible light irradiation. 

As can be seen in Table 1 and 2, zinc ferrites react to 

degrade organic dyes; however, in most cases complete 

degradation occurs in the presence of composite 

photocatalyst or oxidizing agent, H2O2. 

5. Conclusion 

Zinc ferrites were considered as effective 

photocatalysts to achieve oxidation processes in visible 

light region. Diverse preparation procedures affect the 

size, form, and overall structure, all of which can alter 

the photocatalytic activity. The photocatalysts lead to 

formation of the reactive radical species, which may 

degrade pollutants. To further enhance the production 

of reactive radical species, oxidants such as H2O2 can 

be added to generate a Fenton-type system. The 

mixture of zinc ferrites with other photocatalysts 

displayed a synergistic effect that produces enhanced 

photocatalytic activity. Zinc ferrites react to degrade 

organic dyes; however, in most cases, complete 

degradation only happens in the presence of composite 

photocatalyst or oxidizing agent, H2O2. OH, the 

enhancing the photocatalytic activity of the ZnFe2O4 

and ZnFe2O4-composites is the effective separation of 

electron-hole pairs and the formation of •OH. Because 

of magnetic properties, zinc ferrite nanocatalyst can be 

simply recovered from reaction and reused up to 

multiple runs almost without loss of catalytic activity. 
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