Scopus     h-index: 24

Document Type : Short Review Article

Authors

1 Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran

2 Research Institute of Modern Biological Techniques (RIMBT), P.O. Box 45195-313, University of Zanjan, Zanjan, Iran

10.33945/SAMI/JCR.2020.2.2

Abstract

Organic pollutants are the largest kind of pollutants released into waters and wastewater from the some industry and industrial processes. Photocatalytic degradation is one of the significant and effective methods to remove the dyes and other organic pollutant from water and wastewater. This mini-review presents the application of zinc ferrites and ZnFe2O4-based composites in the photocatalytic degradation of organic dye. The zinc ferrite nanomaterials are obtained mainly by thermal methods, sol-gel, co-precipitation, and solid-state or hydrothermal route. Zinc Ferrites have good photocatalytic activity, but when exploited as composite photocatalysts, their photocatalytic efficiency were increased. AS a critical magnetic material, the ZnFe2O4 spinel structure has been proven to be useful in removal dye, ZnFe2O4 have photocatalytic activity under visible light irradiation. However, it is possible to improve the efficiency of photocatalysis activity of ZnFe2O4 by coupling it with another semiconductor or coupling it with carbon nanotubes and graphene, resulting in enhanced photocatalytic performance.

Graphical Abstract

Zinc Ferrite Nanoparticles in Photo-Degradation of Dye: Mini-Review

Keywords

[1] Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 4(1), 22-26.
[2] Keyhanian, F., Shariati, S., Faraji, M., & Hesabi, M. (2016). Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arabian Journal of Chemistry, 9, S348-S354.
[3] Gupta, V. (2009). Application of low-cost adsorbents for dye removal–A review. Journal of Environmental Management, 90(8), 2313-2342.
[4] Atrak, K., Ramazani, A., & Taghavi Fardood, S. (2018). A novel sol–gel synthesis and characterization of MgFe2O4@γ–Al2O3 magnetic nanoparticles using tragacanth gel and its application as a magnetically separable photocatalyst for degradation of organic dyes under visible light. Journal of Materials Science: Materials in Electronics, 29(8), 6702–6710.
[5] Atrak, K., Ramazani, A., & Taghavi Fardood, S. (2018). Green synthesis of amorphous and gamma aluminum oxide nanoparticles by tragacanth gel and comparison of their photocatalytic activity for the degradation of organic dyes. Journal of Materials Science: Materials in Electronics, 29(10), 8347-8353.
[6] Atrak, K., Ramazani, A., & Taghavi Fardood, S. (2019). Green synthesis of Zn0. 5Ni0. 5AlFeO4 magnetic nanoparticles and investigation of their photocatalytic activity for degradation of reactive blue 21 dye. Environmental Technology, doi: 10.1080/09593330.2019.1581841
[7] Atrak, K., Ramazani, A., & Taghavi Fardood, S. (2019). Eco-friendly synthesis of Mg0.5Ni0.5AlxFe2-xO4 magnetic nanoparticles and study of their photocatalytic activity for degradation of direct blue 129 dye. Journal of Photochemistry and Photobiology A: Chemistry, 382, 111942.
[8] Moradi, S., Taghavi Fardood, S., & Ramazani, A. (2018). Green synthesis and characterization of magnetic NiFe2O4@ZnO nanocomposite and its application for photocatalytic degradation of organic dyes. Journal of Materials Science: Materials in Electronics, 29(16), 14151-14160.
[9] Sorbiun, M., Shayegan Mehr, E., Ramazani, A., & Taghavi Fardood, S. (2018). Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. Journal of Materials Science: Materials in Electronics, 29(4), 2806-2814.
[10] Taghavi Fardood, S., Moradnia, F., & Ramazani, A. (2019). Green synthesis and characterisation of ZnMn2O4 nanoparticles for photocatalytic degradation of Congo red dye and kinetic study. Micro & Nano Letters, 14(9), 986-991.
[11] Taghavi Fardood, S., Ramazani, A., Asiabi, P. A., & Joo, S. W. (2018). A Novel Green Synthesis of Copper Oxide Nanoparticles Using a Henna Extract Powder. Journal of Structural Chemistry, 59(7), 1737-1743.
[12] Saeidian, H., & Moradnia, F. (2017). Benign synthesis of N-aryl-3,10-dihydroacridin-1(2H)-one derivatives via ZnO nanoparticle-catalyzed Knoevenagel condensation/intramolecular enamination reaction. Iranian Chemical Communication, 5(Issue 3, pp. 237-363), 252-261.
[13] Saeidian, H., Mirjafary, Z., Abdolmaleki, E., & Moradnia, F. (2013). An Expedient Process for the Synthesis of 2-(N-Arylamino) benzaldehydes from 2-Hydroxybenzaldehydes via Smiles Rearrangement. Synlett, 24(16), 2127-2131.
[14] Ramazani, A., Moradnia, F., Aghahosseini, H., & Abdolmaleki, I. (2017). Several Species of Nucleophiles in the Smiles Rearrangement. Current Organic Chemistry, 21(16), 1612-1625.
[15] Ramazani, A., Ahmadi, Y., Fattahi, N., Ahankar, H., Pakzad, M., Aghahosseini, H.,  Joo, S. W. (2016). Synthesis Of 1, 3, 4-Oxadiazoles From The Reaction Of N-Isocyaniminotriphenylphosphorane (Nicitpp) With Cyclohexanone, A Primary Amine And An Aromatic Carboxylic Acid Via Intramolecular Aza-Wittig Reaction Of In-Situ Generated Iminophosphoranes. Phosphorus, Sulfur, and Silicon and the Related Elements, 191(7), 1057-1062.
[16] Su, M., He, C., Sharma, V. K., Asi, M. A., Xia, D., Li, X.-z., Xiong, Y. (2012). Mesoporous zinc ferrite: synthesis, characterization, and photocatalytic activity with H2O2/visible light. Journal of Hazardous materials, 211, 95-103.
[17] Javadi, F., Yazdi, M. E. T., Baghani, M., & Es-haghi, A. (2019). Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Materials Research Express, 6(6), 065408.
[18] Moradnia, F., Ramazani, A., Taghavi Fardood, S., & Gouranlou, F. (2019). A novel green synthesis and characterization of tetragonal-spinel MgMn2O4 nanoparticles by tragacanth gel and studies of its photocatalytic activity for degradation of reactive blue 21 dye under visible light. Materials Research Express, 6(7), 075057.
[19] Ouni, L., Ramazani, A., & Taghavi Fardood, S. (2019). An overview of carbon nanotubes role in heavy metals removal from wastewater. Frontiers of Chemical Science and Engineering, 13(2), 274–295.
[20] Ramazani, A., Farshadi, A., Mahyari, A., Sadri, F., Joo, S. W., Asiabi, P. A., Ahankar, H. (2016). Synthesis of electron-poor N-Vinylimidazole derivatives catalyzed by Silica nanoparticles under solvent-free conditions. International Journal of Nano Dimension, 7(1), 41-48.
[21] Shayegan Mehr, E., Sorbiun, M., Ramazani, A., & Taghavi Fardood, S. (2018). Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. Journal of Materials Science: Materials in Electronics, 29(2), 1333-1340.
[22] Sorbiun, M., Shayegan Mehr, E., Ramazani, A., & Taghavi Fardood, S. (2018). Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. International Journal of Environmental Research, 12(1), 29–37.
[23] Taghavi Fardood, S., Golfar, Z., & Ramazani, A. (2017). Novel sol–gel synthesis and characterization of superparamagnetic magnesium ferrite nanoparticles using tragacanth gum as a magnetically separable photocatalyst for degradation of reactive blue 21 dye and kinetic study. Journal of Materials Science: Materials in Electronics, 28(22), 17002-17008.
[24] Taghavi Fardood, S., & Ramazani, A. (2016). Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Coffee Powder Extract. Journal of Nanostructures, 6(2), 167-171.
[25] Taghavi Fardood, S., Moradnia, F., Mostafaei, M., Afshari, Z., Faramarzi, V., & Ganjkhanlu, S. (2019). Biosynthesis of MgFe2O4 magnetic nanoparticles and its application in photo-degradation of malachite green dye and kinetic study. Nanochemistry Research, 4(1), 86-93.
[26] Mohamed, R., McKinney, D., & Sigmund, W. (2012). Enhanced nanocatalysts. Materials Science and Engineering: R: Reports, 73(1), 1-13.
[27] García, J. R., Sedran, U., Zaini, M. A. A., & Zakaria, Z. A. (2017). Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell. Environmental Science and Pollution Research, 1-10.
[28] Jiang, L., Wang, Y., & Feng, C. (2012). Application of photocatalytic technology in environmental safety. Procedia Engineering, 45, 993-997.
[29] Taghavi Fardood, S., Moradnia, F., Moradi, S., Forootan, R., Yekke Zare, F., & Heidari, M. (2019). Eco-friendly synthesis and characterization of α-Fe2O3 nanoparticles and study of their photocatalytic activity for degradation of Congo red dye. Nanochemistry Research, doi: 10.22036/ncr.2019.02.00
[30] Taghavi Fardood, S., Atrak, K., & Ramazani, A. (2017). Green synthesis using tragacanth gum and characterization of Ni–Cu–Zn ferrite nanoparticles as a magnetically separable photocatalyst for organic dyes degradation from aqueous solution under visible light. Journal of Materials Science: Materials in Electronics, 28(14), 10739–10746.
[31] Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on gC 3 N 4-based photocatalysts. Applied Surface Science, 391, 72-123.
[32] Bu, Y., & Chen, Z. (2014). Effect of oxygen-doped C 3 N 4 on the separation capability of the photoinduced electron-hole pairs generated by OC 3 N 4@ TiO 2 with quasi-shell-core nanostructure. Electrochimica Acta, 144, 42-49.
[33] William IV, L., Kostedt, I., Drwiega, J., Mazyck, D. W., Lee, S.-W., Sigmund, W., Chadik, P. (2005). Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants. Environmental Science & Technology, 39(20), 8052-8056.
[34] Bu, Y., & Chen, Z. (2014). Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O-C3N4@TiO2 with quasi-shell-core nanostructure. Electrochimica Acta, 144, 42-49.
[35] Pan, H., Zhu, S., Lou, X., Mao, L., Lin, J., Tian, F., & Zhang, D. (2015). Graphene-based photocatalysts for oxygen evolution from water. RSC Advances, 5(9), 6543-6552.
[36] Welo, L. A., & Baudisch, O. (1925). XXXIX. The two-staye transformation of magnetite into hematite. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(296), 399-408.
[37] Ren, P., Zhang, J., & Deng, H. (2009). Preparation and microstructure of spinel zinc ferrite ZnFe2O4 by Co-precipitation method. Journal of Wuhan University of Technology-Mater. Sci. Ed., 24(6), 927-930.
[38] Raja, P., Yadavalli, T., Ravi, D., Therese, H. A., Ramasamy, C., & Hayakawa, Y. (2017). Synthesis and magnetic properties of gadolinium substituted zinc ferrites. Materials Letters, 188, 406-408.
[39] Yadollahpour, A. (2015). Magnetic Nanoparticles in Medicine: A Review of Synthesis Methods and Important Characteristics. Oriental Journal of Chemistry, 31(Special Issue 1 (2015)), 271-277.
[40] Yadav, R. S., Havlica, J., Kuřitka, I., Kozakova, Z., Palou, M., Bartoníčková, E.,  Hajdúchová, M. (2015). Magnetic Properties of ZnFe2O4 Nanoparticles Synthesized by Starch-Assisted Sol–Gel Auto-combustion Method. Journal of Superconductivity and Novel Magnetism, 28(4), 1417-1423.
[41] Pradeep, A., Priyadharsini, P., & Chandrasekaran, G. (2011). Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. Journal of Alloys and Compounds, 509(9), 3917-3923.
[42] Bahrami, M., Ramazani, A., Hanifehpour, Y., Fattahi, N., Taghavi Fardood, S., Asiabi, P. A., & Joo, S. W. (2016). In-situ generated stabilized phosphorus ylides mediated a mild and efficient method for the preparation of some new sterically congested electron-poor N-vinylated heterocycles. Phosphorus, Sulfur, and Silicon and the Related Elements, 191(10), 1368-1374.
[43] Imanzadeh, G., Kabiri, S., Taghavi, S., Zamanloo, M., & Mansoori, Y. (2013). SOLVENT-FREE C-ALKYLATION OF BARBITURIC ACID IN THE NANOCRYSTALLINE MORDENITE MEDIA. Journal of the Chilean Chemical Society, 58(3), 1888-1891.
[44] Ramazani, A., Taghavi Fardood, S., Hosseinzadeh, Z., Sadri, F., & Joo, S. W. (2017). Green synthesis of magnetic copper ferrite nanoparticles using tragacanth gum as a biotemplate and their catalytic activity for the oxidation of alcohols. Iranian Journal OF Catalysis, 7(3), 181-185.
[45] Sadri, F., Ramazani, A., Ahankar, H., Taghavi Fardood, S., Azimzadeh Asiabi, P., Khoobi, M.,  Dayyani, N. (2016). Aqueous-phase oxidation of alcohols with green oxidants (oxone and hydrogen peroxide) in the presence of MgFe2O4 magnetic nanoparticles as an efficient and reusable catalyst. Journal of Nanostructures, 6(4), 264-272.
[46] Taghavi Fardood, S., & Ramazani, A. (2018). Black Tea Extract Mediated Green Synthesis of Copper Oxide Nanoparticles. Journal of Applied Chemical Research, 12(2), 8-15.
[47] Taghavi Fardood, S., Ramazani, A., Ayubi, M., Moradnia, F., Abdpour, S., & Forootan, R. (2019). Microwave Assisted Solvent-free Synthesis of 1-phenyl-1, 2-dihydro-3H-naphtho[1, 2-e][1, 3]oxazin-3-one Catalyzed by FeCl3. Chemical Methodologies, 3(5), 583-589.
[48] Taghavi Fardood, S., Ramazani, A., Azimzadeh Asiabi, P., Bigdeli Fard, Y., & Ebadzadeha, B. (2017). Microwave-assisted multicomponent reaction for the synthesis of 2-amino-4H-chromene derivatives using ilmenite (FeTiO3) as a magnetic catalyst under solvent-free conditions. Asian Journal of Green Chemistry, 1(Issue 1. pp. 1-60), 34-40.
[49] Taghavi Fardood, S., Ramazani, A., Golfar, Z., & Joo, S. W. (2017). Green synthesis of Ni‐Cu‐Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Applied Organometallic Chemistry, 31(12), e3823.
[50] Taghavi Fardood, S., Ramazani, A., Golfar, Z., & Joo, S. W. (2017). Green Synthesis of α-Fe2O3 (hematite) Nanoparticles using Tragacanth Gel. Journal of Applied Chemical Research, 11(3), 19-27.
[51] Taghavi Fardood, S., Ramazani, A., Golfar, Z., & Joo, S. W. (2018). Green Synthesis Using Tragacanth Gum and Characterization of Ni–Cu–Zn Ferrite Nanoparticles as a Magnetically Separable Catalyst for the Synthesis of Hexabenzylhexaazaisowurtzitane Under Ultrasonic Irradiation. Journal of Structural Chemistry, 59(7), 1730-1736.
[52] Taghavi Fardood, S., Ramazani, A., & Joo, S. W. (2017). Sol-gel Synthesis and Characterization of Zinc Oxide Nanoparticles Using Black Tea Extract. Journal of Applied Chemical Research, 11(4), 8-17.
[53] Taghavi Fardood, S., Ramazani, A., & Joo, S. W. (2018). Eco-friendly synthesis of magnesium oxide nanoparticles using arabic Gum. Journal of Applied Chemical Research, 12(1), 8-15.
[54] Taghavi Fardood, S., Ramazani, A., & Joo, S. W. (2018). Green Chemistry Approach for the Synthesis of Copper Oxide Nanoparticles Using Tragacanth Gel and Their Structural Characterization. Journal of Structural Chemistry, 59(2), 482-486.
[55] Taghavi Fardood, S., Ramazani, A., & Moradi, S. (2017). A Novel Green Synthesis of Nickel Oxide Nanoparticles Using Arabic Gum. Chemistry Journal of Moldova, 12(1), 115-118.
[56] Taghavi Fardood, S., Ramazani, A., & Moradi, S. (2017). Green synthesis of Ni–Cu–Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Journal of Sol-Gel Science and Technology, 82(2), 432-439.
[57] Taghavi Fardood, S., Ramazani, A., Moradi, S., & Azimzadeh Asiabi, P. (2017). Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. Journal of Materials Science: Materials in Electronics, 28(18), 13596–13601.
[58] Taghavi Fardood, S., Ramazani, A., Moradnia, F., Afshari, Z., Ganjkhanlu, S., & Yekke Zare, F. (2019). Green Synthesis of ZnO Nanoparticles via Sol-gel Method and Investigation of Its Application in Solvent-free Synthesis of 12-Aryl-tetrahydrobenzo[α]xanthene-11-one Derivatives under Microwave Irradiation. Chemical Methodologies, 3(Issue 6. pp. 684-795), 696-706.
[59] Rozman, M., & Drofenik, M. (1995). Hydrothermal synthesis of manganese zinc ferrites. Journal of the American Ceramic Society, 78(9), 2449-2455.
[60] Hayashi, H., & Hakuta, Y. (2010). Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials, 3(7), 3794-3817.
[61] Makovec, D., Drofenik, M., & Žnidaršič, A. (1999). Hydrothermal synthesis of manganese zinc ferrite powders from oxides. Journal of the American Ceramic Society, 82(5), 1113-1120.
[62] Wang, G., Ma, Y., Tong, Y., Dong, X., & Li, M. (2017). Solvothermal synthesis, characterization, and magnetorheological study of zinc ferrite nanocrystal clusters. Journal of Intelligent Material Systems and Structures, 28(17), 2331-2338.
[63] Fei, P., Zhong, M., Lei, Z., & Su, B. (2013). One-pot solvothermal synthesized enhanced magnetic zinc ferrite–reduced graphene oxide composite material as adsorbent for methylene blue removal. Materials Letters, 108, 72-74.
[64] Du, L., Du, Y., Li, Y., Wang, J., Wang, C., Wang, X., Han, X. (2010). Surfactant-Assisted Solvothermal Synthesis of Ba (CoTi) x Fe12−2 xO19 Nanoparticles and Enhancement in Microwave Absorption Properties of Polyaniline. The Journal of Physical Chemistry C, 114(46), 19600-19606.
[65] Zhu, H., Gu, X., Zuo, D., Wang, Z., Wang, N., & Yao, K. (2008). Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room-temperature ethanol sensor. Nanotechnology, 19(40), 405503.
[66] Malik, M. A., Wani, M. Y., & Hashim, M. A. (2012). Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arabian Journal of Chemistry, 5(4), 397-417.
[67] Lu, T., Wang, J., Yin, J., Wang, A., Wang, X., & Zhang, T. (2013). Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 675-683.
[68] Du, C.-J., Bu, F.-X., Jiang, D.-M., Zhang, Q.-H., & Jiang, J.-S. (2013). Prussian blue analogue K2Zn3 [Fe (CN)6]2 quasi square microplates: large-scale synthesis and their thermal conversion into a magnetic nanoporous ZnFe2− xO4–ZnO composite. CrystEngComm, 15(48), 10597-10603.
[69] Su, M., He, C., Sharma, V. K., Abou Asi, M., Xia, D., Li, X.-z., Xiong, Y. (2012). Mesoporous zinc ferrite: Synthesis, characterization, and photocatalytic activity with H2O2/visible light. Journal of Hazardous materials, 211-212, 95-103.
[70] Bayat, B. K. R., Ebrahimi, M., & Keyvani, B. (2013). Removal of Acid red 206 Dye in Pollutant Water by ZnFe2O4/Bentonite as a Nanophotocatalyst in Batch Reactor Using Taguachi Method. Journal of Water & Wastewater, 24(87), 128-136.
[71] Jing, L., Xu, Y., Qin, C., Liu, J., Huang, S., He, M., Li, H. (2017). Visible-light-driven ZnFe2O4/Ag/Ag3VO4 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Materials Research Bulletin, 95, 607-615.
[72] Yi, Z., Ye, J., Kikugawa, N., Kako, T., Ouyang, S., Stuart-Williams, H., Li, Z. (2010). An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature materials, 9(7), 559-564.
[73] Chen, X., Dai, Y., Liu, T., Guo, J., Wang, X., & Li, F. (2015). Magnetic core–shell carbon microspheres (CMSs)@ ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 409, 198-206.
[74] Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16-42.
[75] Truppi, A., Petronella, F., Placido, T., Striccoli, M., Agostiano, A., Curri, M. L., & Comparelli, R. (2017). Visible-Light-Active TiO2-Based Hybrid Nanocatalysts for Environmental Applications. Catalysts, 7(4), 100.
[76] Abdullah, H., Kuo, D.-H., & Chen, Y.-H. (2016). High-efficient n-type TiO2/p-type Cu2O nanodiode photocatalyst to detoxify hexavalent chromium under visible light irradiation. Journal of materials science, 51(17), 8209-8223.
[77] Petcu, A. R., Meghea, A., Rogozea, E. A., Olteanu, N. L., Lazar, C. A., Cadar, D., . . . Mihaly, M. (2017). No catalyst dyes photodegradation in microemulsion template. ACS Sustainable Chemistry & Engineering, 5(6), 5273-5283.
[78] Cheng, P., Deng, C., Gu, M., & Shangguan, W. (2007). Visible-light responsive zinc ferrite doped titania photocatalyst for methyl orange degradation. Journal of materials science, 42(22), 9239-9244.
[79] Jadhav, S., Hankare, P., Patil, R., & Sasikala, R. (2011). Effect of sintering on photocatalytic degradation of methyl orange using zinc ferrite. Materials Letters, 65(2), 371-373.
[80] Qiu, J., Wang, C., & Gu, M. (2004). Photocatalytic properties and optical absorption of zinc ferrite nanometer films. Materials Science and Engineering: B, 112(1), 1-4.
[81] Mahmoodi, N. M. (2013). Zinc ferrite nanoparticle as a magnetic catalyst: synthesis and dye degradation. Materials Research Bulletin, 48(10), 4255-4260.
[82] Dom, R., Subasri, R., Radha, K., & Borse, P. H. (2011). Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Communications, 151(6), 470-473.
[83] Chen, C.-H., Liang, Y.-H., & Zhang, W.-D. (2010). ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation. Journal of Alloys and Compounds, 501(1), 168-172.
[84] Abazari, R., & Mahjoub, A. R. (2017). Potential Applications of Magnetic β-AgVO3/ZnFe2O4 Nanocomposites in Dyes, Photocatalytic Degradation, and Catalytic Thermal Decomposition of Ammonium Perchlorate. Industrial & engineering chemistry research, 56(3), 623-634.
[85] Cao, X., Gu, L., Lan, X., Zhao, C., Yao, D., & Sheng, W. (2007). Spinel ZnFe2O4 nanoplates embedded with Ag clusters: preparation, characterization, and photocatalytic application. Materials Chemistry and Physics, 106(2), 175-180.
[86] Lu, D., Zhang, Y., Lin, S., Wang, L., & Wang, C. (2013). Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes. Journal of Alloys and Compounds, 579, 336-342.
[87] Fan, G., Gu, Z., Yang, L., & Li, F. (2009). Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique. Chemical Engineering Journal, 155(1-2), 534-541.
[88] Sun, Y., Wang, W., Zhang, L., Sun, S., & Gao, E. (2013). Magnetic ZnFe2O4 octahedra: synthesis and visible light induced photocatalytic activities. Materials Letters, 98, 124-127.
[89] Raza, A., Azam, A., Saeed, M., Ahsan, M., Qayyum, F., & Yaseen, M. (2016). Hydrothermal synthesis and characterization of Co0. 5Zn0. 5Fe2O4 nano-material and evaluation of its photo-catalytic activity under visible light irradiation. Digest Journal of Nanomaterials and Biostructures, 11(4), 1289-1298.
[90] Hakimyfard, A., & Mohammadi, S. (2019). ZnFe2O4 and ZnO-Zn1− xMxFe2O4+ δ (M= Sm3+, Eu3+ and Ho3+): Synthesis, physical properties and high performance visible light induced photocatalytic degradation of malachite green. Advanced Powder Technology, 30(6), 1257-1268.
[91] Yadav, N., Chaudhary, L., Sakhare, P., Dongale, T., Patil, P., & Sheikh, A. (2018). Impact of collected sunlight on ZnFe2O4 nanoparticles for photocatalytic application. Journal of Colloid and Interface Science, 527, 289-297.
[92] Wang, C., Tan, X., Yan, J., Chai, B., Li, J., & Chen, S. (2017). Electrospinning direct synthesis of magnetic ZnFe2O4/ZnO multi-porous nanotubes with enhanced photocatalytic activity. Applied Surface Science, 396, 780-790.
[93] Chen, H., Liu, W., & Qin, Z. (2017). ZnO/ZnFe2O4 nanocomposite as a broad-spectrum photo-Fenton-like photocatalyst with near-infrared activity. Catalysis Science & Technology, 7, 2236-2244.
[94] Chen, P. (2017). Synthesis and photocatalysis of novel magnetic reduced graphene oxide-ZnFe2O4 nanocomposites with highly efficient interface-induced effect. Journal of Sol-Gel Science and Technology, 82(2), 397-406.
[95] Rani, G. J., & Rajan, M. J. (2017). Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye. Research on Chemical Intermediates, 43(4), 2669-2690.
[96] Chandel, N., Sharma, K., Sudhaik, A., Raizada, P., Hosseini-Bandegharaei, A., Thakur, V. K., & Singh, P. (2019). Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes. Arabian Journal of Chemistry, doi:10.1016/j.arabjc.2019.08.005
[97] Rameshbabu, R., Kumar, N., Karthigeyan, A., & Neppolian, B. (2016). Visible light photocatalytic activities of ZnFe2O4/ZnO nanoparticles for the degradation of organic pollutants. Materials Chemistry and Physics, 181, 106-115.