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Abstract:  
For the analysis of cadmium, the toxicity of spectroscopic methods is increasing because the measurement of  

the low level for detection of this element is done in various samples. This review studies the methods of 

separation and pre-concentration and analyzes spectroscopic methods for detecting cadmium in water samples. 

Considering the amount of trace cadmium ion in the analysis of aqueous samples, a suitable method should be 

used. From the past, chemists have been trying to find a solid phase to recover analytes from the water matrix. 

The experimental method of SPE is a standard method for the analysis of heavy metals such as cadmium ion 

in aqueous samples. Cadmium is known worldwide as a toxic metal. Therefore, it is often necessary to 

determine this element in environmental, biological, food and agricultural samples. However, analyses are 

difficult because the quantities of cadmium samples are relatively small, except for trace amounts. 

Measurements are made by flame atomic absorption spectrometry and inductively coupled plasma optical 

emission spectrometry.For this reason, several preconcentration methods for the determination of cadmium ion, 

including solid phase extraction, coprecipitation and cloud point extraction, has been reviewed.A brief history 

of using Solid-phase extraction in the analysis of cadmium ion in water samples is presented in this paper. 
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1. Introduction 

Due to the sensitivity and selectivity of techniques such 

as atomic absorption spectrometers, pre-concentration 

must be pre-condensed, especially in water samples for 

cadmium ion, before measurement is trace. In addition, 

since high-level non-toxic components are usually 

accompanied by analytes, a purge step is often done. 

Liquid liquid extraction is a classic method to prevent 

the removal of metal ions and matrixes. Solid phase 

extraction (SPE) is another approach that offers a 

number of important benefits. This reduces the 

consumption and exposure of solution and also, the 

cost of disposal and extraction time to prepare the 

sample. As a result, in recent years, the SPE has been 

successfully used to isolate and identify sensitive metal 

ions, mainly in water samples. Following the 

introduction of the theory of this technique, guidelines 

are developed Solid-phase extraction-based methods 

for pre-concentration of small amounts of cadmium 

ions. Finally, application examples are provided[1-

14].The above-mentioned techniques, with FAAS, 

provide low cost, high-performance, and high-end 

specimens. The determination of cadmium by an 

atomic flame spectrometer is free of interference, and 

this can easily be measured with compressed air-

acetylene flame. In the resonance line of 228 nm, the 

detection limit for cadmium is 0.02 mg L−1. 

 The analytical line is in the range of 326.1 nm to 

determine the concentration of Cd higher and the 

concentration of the characteristic is about 6 mg L-1, so 

greater than this value should be avoided [15,16]. 

Cadmium measurement was difficult by ETAAS for a 

long time, since cadmium is an element that has 

volatility [17].The SPE technique is similar to the 

liquid fluid extraction (LLE), which consists of two 

phases )two incompatible solvents(. However, instead 

of two dispersed liquid phases, as in the LLE, SPE 

involves partitioning between the fluid (the matrix of 

the sample) and a solid phase (absorbent). This typical 

filtration technique provides concentration and 

enrichment of analytes from the solution by sorption 

onto a solid sorbent.Accordingly, the liquid sample is 

transported through a column, a cartridge, a tube, or a 

absorber disc that absorbs and holds the analytes. After 

all the sample passes through the sorbent, the stored 

analytes are used then being recovered upon elution 

with a suitable solvent. Solid-phase extraction began 

for the first time fifty years ago [1,2,3]. However, 

numerous studies have shown that the great potential of 

this technique can be used for specialized studies. 

[18,161-177]. 

 

1.1. Basic principles 

An SPE method is always composed of three to four 

successive steps, as illustrated in Fig. 1.. First, a solid 

sorbent should be swirled with a suitable solvent (as a 

solvent). This step is important because it moisturizes 

the absorbent and activates the absorbent groups. In 

addition, the removal of possible impurities that are 

initially present in the sorbent is eliminated. Also, at 

this stage, the air contained in the column is removed 

and the saturated volume of the adsorbent is filled with 

solvent. Typically, methanol is used to activate the 

depleting phase (such as octadecyl-bonded silica), 

followed by water or a water buffer whose pH and ionic 

strength are similar to the sample. Care should be taken 

to ensure that no solids are absorbed between the two 

stages of elution and the passage of the adsorbent 

sample, otherwise the analytes will not be maintained 

effectively and poor results will be achieved. If the 

sorbent is dried for more than a few minutes, it should 

be re-modified.  

The second step is to pass and absorb the sample 

through a solid absorber. Depending on the system 

used, the sample size can be from 1 mL to 1 L. The 

sample may be transmitted by gravity, pumping, 

vacuum or by an automatic system of adsorbent 

columns. The flow rate of the sample through the 

sorbent should be low enough to allow the adsorbent to 

maintain analytes efficiently. During this step, analyses 

enriches on the adsorbent. Even if the matrix 

components are retained by a solid absorber, some of 

them will pass, so the matrix separation is possible 

from sample analysis. 

The third step (which is optional) may involve solid 

solvent washing with a suitable solvent having low 

tensile strength to eliminate the absorbed matrix 
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components .The absorbent drying step may also be 

recommended, especially for water matrices, to remove 

the effects of water absorption from solids. This 

eliminates the presence of water in the final extract, 

which in some cases may cause post-condensation 

concentration in the analysis with difficulty. The final 

step involves the removal of the desired analyte 

elements by a suitable solvent and without deleting the 

matrix components of the preservation. The volume of 

the solvent must be adjusted to allow quantitative 

recovery of the analytes by low dilution. Additionally, 

the stream should be properly optimized to ensure that 

the analyses are completely out.  It is often advisable to 

divide the volume of the solvent into two parts and 

remove the analyte from the adsorbent. 

 

Fig. 1: . Solid-phase extraction operation steps 

 

1.2. Maintenance and Retention of cadmium on 

adsorbent 

Adsorption and absorption of cadmium on solid 

adsorbent’s are necessary for preconcentration (see 

Fig. 2). The adsorption mechanism depends on the 

nature of the sorbent, and may include a simple 

adsorbent, chelation, or an ion exchange. Also, for the 

trace cadmium inhibition, ion- pair solid phase 

extraction can be used. 

1.2.1. Adsorption.  

Trace Cadmium inhibition is usually absorbed in solid 

phases, through the forces of water retention or 

hydraulic interaction. Hydrophobic interaction occurs 

when the solid absorbent is very non-polar (reversed 

phase). The most commonly used absorbent of this type 

is octadecyl-bonded silica (C18-silica). Mostly it is 

activated with water-soluble oxygen, such as methanol 

or acetonitrile. Such interactions are usually preferred 

to online systems because they are not too strong . 

 

1.2.2. Chelation  

Several atoms of the functional group are capable of 

chelating with  cadmium ion in water. Atoms are often 

used in nitrogen (e.g. N in amines, azo groups, amides, 

nitriles) and sulfur (eg S in thiols, Tiocarbamate, teeth). 

The nature of the functional group shows the selective 

ligand idea of the selectivity of cadmium ion . In 

practice, mineral cations may be divided into 3 groups: 

a) hard ,group cations: It reacts through electrostatic 

interactions (due to increase in 

The entropy is due to changes in the orientation of 

water hydration molecules); this group consists of 

alkaline and alkaline- earth metals (Ca2+, Mg2+,K+, 

Na+) that comprise the weakly outer crystalline 

complexes by only hard oxygen ligands. 

b) Boundarine, Cations: These cations have an 

intermediate behavior; these groups of cations include 

Fe , Co2+  Ni2+  Cu2+  Zn2+  Pb2+  Mn2+ .  They have a 

complex for both hard and soft ligands. 

c) Soft, cations: These cations tend to produce a 

medium-magnesium (N) and soft (S) ligand. Therefore, 

Cd2+  and Hg2+   have a strong coordinate bond with 

medium (N) and soft ligands (S) 

 

For soft metals, the order of the donor atom 

dependence has been observed: 0-N-S. A reversed 

covalent bond has been observed for hard cations. For 

a bidentate ligand, the dependence on a soft metal 

increases with the softness of the donor atom: (0. 0) - 

(0, N) - (N, N) - (N, S). This order is reversed for hard 

metals. In general, the competition for a one-way 

covalence bond of a given ligand consists essentially of 

the first and second group metals for sites O and metals 

in group two and the third group for sites N and S. The 

competition between the metals in group I and the third 

group is very weak. 

Chelating chemical agents that are added directly to the 

sample to chelate trace cadmium loaded onto a suitable 

absorbent. One method is to load the chelating group 

into the sorbent. finally, three different methods are 

available: (1) the synthesis of new sorbents containing 

such suitable functional groups; (2) the chemical bond 

with suitable functional groups on the adsorbent; (3) 

the physical absorption of the groups in the adsorbent 

by loading the solid matrix with solution containing a 

chemical ligand (impregnated, coated or loaded 

absorbers). The latter is the easiest to use in practice. 

The main drawback is that there is a probability that the 

calcite discharges from solid solvent.During the 

elution, it reduces the lifetime of the saturated 

adsorbent. Different ligands have been used on various 

types of solid matrices for condensation, separation and 

determination of successful inhibition metal ions. 
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Chemical groups with a hydrophobic group are stored 

on hydrophobic acids (such as C18-silica). Also, ionic 

exchange resins with chemicals containing an 

ionexchange group, such as a sulfonic acid ditizone 

derivative (i.e., diphenyl tiocarbazone) (DzS), 5-sulfo-

8-quinolinol, 5-sulfosalicylic acid, and tistylecyclic 

acid. 

The metal ion cations depend on several factors for the 

performance of the chelate: (1) the hardness and 

softness, charge, and size of the metal ion; (2) the 

nature of the atoms of the donors in the ligand; (3) the 

buffer conditions that favor the metal cation extraction 

and bonding with the group Active chelate; (4) the 

main nature of the adsorbent (e.g., the degree of cross-

linking for a copolymer). However, the presence of a 

solid sorbent may also effect and result in the formation 

of a complex with a different stoichiometry than that 

observed in Homogeneous reaction [10,11] In fact, 

several properties of the adsorbent should be taken into 

account, namely the number of active groups present in 

the resin phase [7,10], the resin and the ligand 

connected [12] Resin hole dimensions [13]. 

 

 
Figure 2. Interactions occurring at the surface of the solid sorbent. 
F, functional group; TE, trace element; MS, matrix solvent; MI, 
matrix ions; ES, elution solvent. 

 

2. Measuring cadmium 

2.1. Atomic Absorption Spectroscopy (AAS) 

The determination of cadmium by the Flame Atomic 

Absorption Spectrometer (FAAS) is virtually intact, 

requiring air flames and acetylene [13]. Interference 

from aluminum and iron can be avoided by adding 

protective agents such as ascorbic acid, citric acid and 

EDTA. The technique is very low (LOD 0.02 mg L-1) 

and is often unsuitable for low-level analysis [13]. In 

this sense, to determine the amount of cadmium 

measurement, as shown in the tables in the table below, 

many preconcentration and preparation methods 

should be performed [13]. 

Graphite furnace atomic absorption spectroscopy (GF-

AAS) is a good alternative to determining the small 

amount of cadmium in several samples for sensitivity 

[13]. However, in some cases, the steps before and after 

the isolation are performed before the GF-AAS 

analysis measurements. Using a modifier, fixes 

cadmium, and allows measurement without effect 

Matrix and interference species. The Pd-Mg modifier 

is one of the most commonly used ones, since it 

produces the best results. This modifier allows for the 

use of temperatures in the range of 1200 ° C to 1400 ° 

C, which can further distribute the disturbing elements 

[13-17]. The stabilizer effect of this modifier also 

improves its atomic temperature to 2000 ◦C [13]. 

Ammonium phosphate is another modifier that is often 

used to determine cadmium by the GF-AAS, which 

allows its atomic temperature to be reduced to 1600 °C 

and reaches a detection limit of 15 pg[13,18]. 

2.2. Inductively coupled plasma optical emission 

spectrometry (ICP OES) 

An induced optical-optical optical spectrometry is an 

appropriate analytical method that is often used to 

determine most heavy metals such as cadmium in 

different types of specimens [19]. However, the small 

amounts of cadmium in many samples are below the 

detection limit of this technique. Almost all 

photomultiplier-based ICP spectrometers use the 

analytical line Cd 220.353 nm, despite the high 

background interference and interference between the 

elements of 220.4 nm alpha and the background change 

due to iron (Hg). The direct interference of the overlap 

due to iron in the analytical lines was found to be 226.0 

and 284.8 nm[20.21]. Therefore, preconcentration and 

separation methods are designed to measure the 

cadmium content in complex matrices using ICP OES. 

Several tables shown in this paper summarize the use 

of separation techniques such as liquid liquid 

extraction, solid phase extraction, cloud extraction, as 

a preparation for cadmium determination using ICP 

OES. 

3. Separation and pre-condensation of cadmium 

Separation techniques [23,50], liquid liquid extraction 

[57-60], solid phase extraction [69-134], and cloud 

extraction [139-146,150-160] have been successfully 
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used. Each technique has advantages and 

disadvantages and should be selected according to the 

analytical problem. 

3.1. Coprecipitation 

One of the most efficient separation and enrichment 

methods for heavy metal ions is also coprecipitation. In 

this technique, the collector should be easily separated 

from the matrix solution. This can be done by filtering, 

centrifuging and depositing. The advantages of this 

technique is its simplicity. Inorganic or organic 

collector used as efficient collectors of fine elements. 

However, this process is slow [22]. This technique is 

used to determine the cadmium samples in water. For 

cations such as aluminum, gallium, cerium (IV), 

erbium, iron (III), magnesium, samarium and 

zirconium hydroxide, they have been widely used and 

successfully applied to trace amounts of cadmium ions 

used [23.50 ].In Table 1, several methods for 

determining cadmium in many samples are described 

using coprecipitation as a separation and 

preconcentration method. 

3.2. Methods by Liquid–liquid extraction 

Solvent extraction is one of the most extensive methods 

of preparation and separation to determine the small 

amounts of heavy metals. Its feature is simplicity, 

convenience, wide scope and, etc.. In this method, the 

metal is between two non-intermixing liquid phases 

(usually the water and organic phase). After a complex 

reaction, the metal ion is extracted from the water 

solution to the organic phase. To measure, the extracted 

metallic cation can be measured directly in the organic 

phase and usually acid is performed [51-53]. 

Separation and preconcentration methods using solvent 

extraction generally result in high concentration 

because of the difference in the volume of water and 

organic phases. This method is time consuming and 

retains a large amount of potentially toxic organic 

solvents as waste. This single operation can be done 

with a flow injection system (FI) and / or a sequential 

injection (SI), which, in addition to reducing sample 

consumption and solvent consumption, automatically 

manipulates the enclosed[54]. 

Methods in flow injection systems for separation and 

pre-concentration using solvent extraction to determine 

metals such as cadmium and lead are widely discussed 

in literature [55, 56]. Table 2 shows several analytical 

systems for separating cadmium and pre-condensation 

using solvent extraction and determining cadmium by 

flame atomic spectrometry techniques. 

3.3. Methods by Solid phase extraction 

The solid phase extraction method is based on the 

partition between a liquid containing a sample matrix 

and a suitable solid phase (sorbent). The method is 

based on the contact of a homogeneous liquid sample 

through a column, a flask, a cartridge, a tube, or a disc 

containing a selective absorber holds cadmium ions. 

After this step, recovered cadmium is eluted by a 

proper solution with a suitable solvent [68].Sorbents 

used  for pre-concentrate and  determining cadmium 

can be loaded with complex reactions by suitable 

reagents. Reagents suitable for loading these sorts 

adsorbents include: activated carbon, natural 

adsorbents, Amberlite XAD resins [71-75],  

polyethylene [76] and others [77]. Many reactants have 

been used to store cadmium ions, which include: 2-(2-

thiazolylazo)-pcresol (TAC) [85], 2-propylpiperidine-

1-carbohydrate [86], 2- (2 Benzotriazole-zo) -2-p-

cresol (BTAC) [80,87], red periglolol [81], 1- (2-

pyridylazo) -2-naphthol (PAN), [88], dithizone 

[89,90], and 2- (5-Bromo-2-pyridylazo) -5-

diethylaminophenol (5-Br-PADAP) [91]. Reagents can 

also be used with chemical reactions, which are potent 

inhibitors for the pre-concentration of cadmium. 

Supports includes the Amberlite XAD Series [92,93], 

Silica Gel [94-96] and Cellulose [97,84]. Several 

methods for the separation and pre-concentration of 

cadmium have been proposed using the solid phase 

extraction method shown in Table 3. 

3.4. Automation and on-line analysis 

The solid phase extraction isolation technique can be 

easily automated [123-124]. Also, a larger sample size 

can be analyzed. In addition, a smaller sample size can 

also be used. However, in the case of complex 

specimens, off-line SPE should be used because of its 

greater flexibility, as well as the possibility of 

analyzing the same extraction using various techniques 

to apply. 

3.4.1. On-line coupling to liquid chromatography. 

On-line systems mainly use a micro-column. On-line 

systems have been reported with several detectors, such 

as ultraviolet detectors or plasma mass spectrometers 

(ICP-MS), which have been inductively coupled, with 

detection limits in the range of 0.05-50 ppm. Using a 

photodiode fluorescent detector, detection with a 

maximum absorption wavelength can reduce the 

detection limit to 0.50 ppb [125]. 

3.4.2. Determinates of cadmium with Online 

coupling to Atomic Absorption 

Online spectroscopy in atomic absorption for heavy 

elements [126] Olsen et al and Fang et al [127,128] 

were presented for the first time. Then, an absorption 

extraction system, which was coupled with the GF- 
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AAS coupling, was proposed for small amounts of 

cadmium [129]. Since then, numerous articles have 

been reported by FI. The selected programs are shown 

in Table 4. This sorbent should be used for rapid 

analysis of antibiotics in FI systems [130]. In practice, 

the C18 -silica adsorbent is widely used. Selection of the 

appropriate reactant based on their rapid reaction with 

metals, such as diethyldithiocarbamate (DDTC) and 

Ammonium pyrrolidine dithiocarbamate (APDC) 

[131,132]. Also, both reactants are soluble in water and 

not absorbed in C18- silica so that they are not loaded 

with their reactants. However, these reagents are public 

and non-selective. Although the C18-silica is often used 

sorbent for preconcentration of flow injection analyses, 

other sorbents are used for some applications as 

reported in Table 4, such as reactive activated carbon 

[134], polyurethane foam PUF) [134] or PTFE rotation 

[133]. A small reactor (KR) has recently been found 

which includes a long spiral tube, usually made of 

PTFE. 

3.4.3. Cadmium ion determinates in coupling with 

ICP-AES or ICP-MS. 

The first preconcentration report of FI in line with the 

ICP-atomic emission spectrometry (AES) appeared 

about 25 years ago [130]. Since then, numerous studies 

have been carried out to measure heavy metals, 

including cadmium, using various adsorbents such as 

modified ZrO2 or modified silica gel [136]. 

3.4.4. On-line coupling of cadmium by 

spectrophotometry 

The benefits of spectrophotometry are cheap and very 

common tools. In addition, by choosing a redundant 

reaction, it is possible to determine the number of metal 

cations [123]. 

Its coupling with FI analysis is well suited for 

regulatory purposes, and examples are shown in Table 

4 [123]. Solid phase spectrophotometer (SPS) is also 

provided with FI systems due to its simplicity and low 

detection limits. Solid sorbents are commercially 

Table 1: Preconcentration procedures using coprecipitation for the determination of cadmium 

Sample Collector Technique LOD(µgL-1) R.S.D. (%) Reference 

Ground water MnO2 FAAS  3.3-8.3 [23] 
Natural water MnO2 FAAS   [24] 

Rain water MnO2 

MnO2 

FAAS   [25] 

Sea water MnO2 

 

FAAS   [26] 

Zinc and zinc ~aluminum 

alloys 

MnO2 ICPOES   [27] 

River waters MnO2 ICPOES 3.2 5.0 [28] 

Sea waters and mineral 

water 

Aluminum hydroxide FAAS 16 2.0-3.0 [29] 
Sea waters Cerium(IV) hydroxide FAAS 7 8 [30] 

Tap water Erbium hydroxide FAAS O.Z4 1-9 [31] 

Sea water Gallium hydroxide ICPOES O.IS  [32] 

Sea water Gallium hydroxide ICPOES O.IS  [33] 

Sea water Iron hydroxide ETAAS   [34] 

Sodium tungstate Lanthanum hydroxide ICPOES I.JI 3.1-5.5 [35] 

Dialysis concentrate Magnesium hydroxide ETAAS   [36] 
Sea water Magnesium hydroxide ICP-MS 2.7.10-4  [37] 

Urine, sediment Copper EAAS 24.0 5.0 [38] 

Natural water Zirconium hydroxide E,AAS 4.2.10-4 <10 [39] 

Infant formulas and milk Ammonium Pyrrolidine 

dithiocarbamateditehyldithiocarb

amate   ditehyldithiocarbamate  

dithiocatb:wtuite 

ETAAS 0.04  [40] 

Cupric sulfate Ammonium Iron sulfate ICPOES  4.4-5.8 [41] 
Natural water Bismuth ditehyldithiocarbamate ETAAS   [42] 

Natural water Copper ditehyldithiocarbamate FAAS 1.5 4.4 [43] 

Natural water Copper ditehyldithiocarbamate FAAS 3.2 2.0 [44] 

Cobalt sulfate Cerium phosphate FAAS 55.9  [45] 

Water Lanthanum phosphate ICPOES  1.6 [46] 

Sea water Palladium ETAAS  3.8 [47] 

Natural water Sodium ditehyldithiocarbamate ICPOES   [48] 

River water Sodium ditehyldithiocarbamate ICPOES 10.0  [49] 

Sea water Sodium sulphide ICPOES  1.9 [50] 

**Pg/mL   a ng/g 

 

a 
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available or customizable. FI extraction methods have 

several advantages: an increase in sample size (with an 

increase of 1 to 2 times), the consumption of the 

prototype and the indicator is reduced two to three 

times, the relative standard deviation of the standard 

decreases by about 1-2%, low pollution And the 

method will be automated quickly and easily. 

3.5. Cloud Point Extraction (CPE) 

The cloud point phenomenon occurs when a non-ionic 

or amphoteric surfactant react above the critical 

concentration of micelle (CMC) causes the metal 

cation or the main solution to be analyzed in two steps, 

when the temperature specified in the thermometer is 

called the super-spot cloud Gets At the top of the cloud 

point, the micelles form the surfactant molecules that 

act as an organic solvent in the extraction of the liquid 

liquid, and the analytes are divided between the 

micelles and the water phase [135-137]. Therefore, 

metal cation can be trapped and dispersed into a rich 

phosphorus phase, which is hydrophobic.The nucleus 

of the micelle is formed in the form of an accumulated 

hydrophobic, which is formed between the metal ion 

and a proper chalky agent in the proper conditions. 

Partition evaluate, So the coefficients of the ligands and 

surrounding complexes create a peripheral Surfactant 

that changes the ratio of the reaction, the position of the 

equilibrium, and the parameters of the analysis [140], 

for example, the cadmium determined prior to 

centrifugation in a micellar phase of Triton X-114 

phase And is determined by GF-AAS using appropriate 

modifiers. Therefore, at a higher pyrolysis temperature, 

the removal of the surfactant matrix is achieved prior 

to the cadmium atomization step without risking the 

loss of the analite and preventing the absorption of the 

background. Table 5 shows some of the new CPE 

methods for determining cadmium and heavy metals. 

 

 

Table 2 : Preconcentration methods by solvent extraction for determination of cadmium 

 

 

 

 

 

 

 

 

 

Sample Technique Complication 

agents 

Solvent Enrichment  

factor 

           Reference 

Table salt FAAS Dithizone MIBKa 99 [57] 

Waste Water FAAS HBDAPb HNO3/HCl  [58] 

Estuarine water GFAAS APDCc and 

DDCd 
  [59] 

Urine and CRF ICP-MS APDC MIBK/HNO3 23.3 [60] 

High Purity aluminum 

salts 
ICPOES APDC HNO3/H2O2  [61] 

Natural water FAAS Dithizone Xylene  [62] 

Natural water FAAS Dithizone HNO3 543 [63] 

Aragonite ET AAS NaDDC MIBK  [64] 

water FAAS APDC MIBK  [65] 

Seawater ICP-MS DOC   [66] 

Drinking water FAAS CMPQe   [67] 
a Methylisobutyl ketone      
bNN-bis(2-hydroxy-5-bromo-benzyl)-1-

2diaminopropane 

    
e Ammonium Pyrrolidinedithiocarbamate     
d Ditehyldithiocarbamate      
e 5-(2-Cabomethoxyphenyl)azo-8quinolinol 
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Table 4: Applications of SPE to FI on-line preconcentration systems  

Matrix Sorbent Eluent Analysis method Recovery% Preconcentration Matrix Sorbent 

Certified C18-
silica 

IBMK F-AAS 99.2–
101% 

60–189 3000 [132] 

biological, C18-
silica 

EtOH F-AAS -- 4–1000 300–
3000 

[134] 

        

vegetable C18-
silica 

MeOH F-AAS -- 14–60 4000-
10000 

[130] 

samples PTFE 
turnings 

IBMK F-AAS 95–102 330 800 [133] 

Standard PUF EtOH F-AAS -- 4–1000 300–
3000 

[134] 

solutions Lewatit 

TP807’84 

PAPhA 

HCl Spectrophotometry 80–120 50 2000-
5500 

[123] 

Table 3:  Off-line procedures for Cadmium preconcentration using solid phase extraction 

Sample Enrichment  factor 

 

Technique LOD(µgL-1) R.S.D. (%) Reference 

Sea water - FAAS - 3.3 [71] 
Enviromental sample - FAAS - - [72] 
Sea water 150 

MnO2 

FAAS - - [73] 

Waste water 100 

 

FAAS 0.001 - [81] 

Tap water  - FAAS 2.00 2.2 [82] 
River waters - FAAS 5.0 5.1 [83] 
Sea waters  12000 FAAS 0.005 2.1-3.2 [88] 
Tap water 200 FAAS - 1.9 [90] 

River waters - FAAS 4.06 2.9 [92] 

River waters - FAAS - 5.0 [93] 

Sea water - GF-AAS 4.0 8.0 [95] 

Tap water - FAAS 3.3 3.9 [98] 
Sea water 40 ICPOES 53.0 4.2 [99] 

Sea water 100 GF-AAS 0.20 5.0 [100] 

Natural water 500 ICPOES 0.15 <10 [101] 

soil 200 FAAS 2.50 2.4-3.2 [103] 
River waters - FAAS - 2.9 [104] 

Natural water 250 FAAS 4.00 4.4 [105] 

Natural water 375 FAAS 0.25 2.5 [106] 

Water 129 FAAS 0.20 - [107] 

Waste water 130 FAAS 6.10 1.6 [108] 

Waste water - FAAS 15.0 2.8 [109] 

Natural water - FAAS - 3.0 [110] 

River water 100 GF-AAS 0.04 4.9 [111] 

Water sample - FAAS 0.70 1.9 [112] 

Sea water 50 FAAS 0.10 - [113] 

Sea water - FAAS 0.03 2.8 [115] 

Sea water - FAAS - 2.0 [116] 

Water sample 294 FAAS 3.0 2.78 [117] 

Water sample - FAAS 0.017 - [118] 

Tap water 115 FAAS 1.0 2.2 [120] 

Sea water - FAAS - 1.9 [121] 
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Table 5 : CPE applications for cadmium preconcentration and determination 

Sample Analysis method LOD(µg.mL-1) RSD(%) Reference 

vegetable F-AAS 0. 3  [139] 

blood GF- AAS 0.08  [140] 

River waters FAAS 1.10                     3.5                           [141] 

Human hairs F-AAS 2.86 1.39 [142] 

Tap water 

Waters 

ICP-OES 

ICP-MS 

0.077 

0.004 

4.2 [143] 

Waste waters GF- AAS 0.08 

 

4.8 

2.8 

[144] 

[145] 

Biological sample GF- AAS 0.040  [146] 

 

 

Table 6 : preconcentration of cadmium ions using knotted reactors 

Sample Analysis method Enrich 

factor 

LOD(µg.mL-1) RSD(%) Reference 

Tap water FAAS 37 7.5 2.9   [150] 

Water,tea FAAS 57 8.0 1.30 [151] 

Water and Bioligical sample FAAS 58 0.2    3.30            [152] 

Blood and liver F-AAS 20 2.0 2.60 [153] 

Water samples and soil 

Bioligical s and 
enviromental samoples 

GF- AAS 

GF- AAS 

99 

125 

1.6 

4.8 

2.70 

2.0 

[154] 

[155] 

Water sample 

Blood 

GF- AAS 

GF- AAS 

142 

99 

5.0 

1.60 

4.8 

2.8 

[156] 

[157] 

Bioligical samople, Urine ICP-OES 140 0.2 2.70 [158] 

Urine 

Seawater 

ICP-MS 

ICP-MS 

34 

28 

4.7 

0.028 

2.65 

- 

[159] 

[160] 

      

4. Conclusions 

The trace of cadmium ions is toxic and carcinogenic. 
Trace of cadmium ions in various samples pre-
concentrated methods are used by separation 
techniques such as liquid liquid extraction, solid phase 
extraction, deposition, and cloud extraction. However, 
each method has its own advantages and disadvantages 
and should therefore be selected according to the type 
of sample. Most proposed methods are performed using 
solid phase extraction. In recent years, online systems 
have become more important. 
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