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Abstract:   
Abuse of antibiotics in therapy has led to development of resistance in the target organisms. Failure of the 

current antibiotics to control infections makes it essential to discover alternative drugs. The pathogenicity in 

numerous bacteria is regulated by Quorum sensing (QS) signaling systems. The QS inhibition system may 

cause the reduction of virulence and defense against the bacterial infections. The QS is the main regulator of 

virulence and biofilm formation in Pseudomonas aeruginosa. A variety of plants showed their effects on P. 

aeruginosa virulence. Extract of various plants control the regulatory QS genes and factors with marginal 

effects on bacterial growth. The quorum-quenching (QQ) mechanisms are unrelated to static or cidal effects. 

In fact, anti-QS have already shown promise in the battle against P. aeruginosa infections. 
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1. Introduction 

To defeat the difficulties of antibiotic therapy against 

the resistant infections, using the novel remedies is of 

a great importance. Pseudomonas aeruginosa is a 

notorious bacterium due to its substantial virulence 

factors, affinity to form stubborn biofilm and the most 

prevalent cause of the nosocomial infection such as 

Pneumonia and urinary tract (UT) infections. P. 

aeruginosa has revealed an increased resistance 

towards the antibiotics including imipenem, 

quinolones, and cephalosporins [1]. To struggle 

against these infections a broad study on the novel 

antimicrobials is required. The current approaches 

against these infections are quorum sensing (QS) 

inhibition. The QS is not only a population-dependent 

fact by which bacteria make sense about their 

population solidity but also is a  controller of diverse 

roles such as luminescence, bioflim development, and 

virulence factor production. Disruption of the 

bacterial cell-cell contact is identified to attenuate 

virulence, while restrictive selective strain toward 

bacterial resistance. Plants can make diverse 

antimicrobial substances such as quinones, 

flavanones, phenolics, catechins, polyphenolics, 

alkaloids, and terpenoids. Like antibiotics, these 

substances are aiming at killing of the pathogens and 

work via a specific mechanism like disrupting 

microbe cell membranes. However, plants have a 

different way of dealing with microbes for targeting 

microbe cell’s communication system. The 

intercellular communication in bacteria is identified as 

quorum sensing (QS). Anti-QS agents were first 

described in the red marine alga, Delisea pulchra [2] 

in a south Florida [3]. In this review, we discussed an 

ethnobotanically directed exploration for QS 

inhibiting agents in several medicinal plants for anti-

QS action. The terrestrial plants not only generate 

autoinducer [6], a mimic to the bacterial QS system 

and respond to microbial signals [7, 8] and discussed 

about complications related to P. aeruginosa infection 

and the plants which could showed potentially novel 

therapeutic way for the treatment of P. aeruginosa 

infections. Recently, Conocarpus erectus, Tetrazygia 

bicolor, Chamaesyce hypericifolia, Callistemon 

viminalis, Bucida buceras, and Quercus virginiana 

revealed anti-QS effects using Chromobacterium 

violaceum and Agrobacterium tumefaciens NTL4 as 

biomonitors [9-12].  

2. Quorum Sensing: a Novel Target  

Quorum sensing (QS) is a population-dependent event 

[13]. The capability to sense the size of a bacterial 

population is arbitrated through small signaling 

molecules or autoinducers [14, 15]. These molecules 

are continually formed and received at a basal level by 

bacterial cells. There is an excess of signaling 

molecules in the surroundings, with high population 

density and the signals diffuse back into the cell 

where they ease the regulation of gene expression 

[14]. The QS systems are everywhere among bacteria, 

controlling the diverse functions such as biofilm 

formation, luminescence, antibiotic, virulence factor 

formation, pigment formation, plant-microbe 

interactions and motility [16, 17]. Although there are a 

various different QS systems [18], the most broadly 

studied prototype is based on the Lux system of 

Vibrio fisheri and V. harveyi [19, 20]. This QS event 

engages a three part system: a liberally diffusible 

signal, a synthetase to make this signal, and a 

regulator that interacts in union with the signal to 

control the gene expression.  

The key signaling molecules formed by Gram-

negative bacteria are acyl-homoserine lactones 

(AHLs) [21]. In V. fisheri, LuxI makes an AHL 

signaling molecule which is connected to LuxR at a 

certain level [20, 22]. This level is reached only when 

enough bacteria are present (a quorum) to create 

sufficient amounts of the AHL [23-26]. The AHLs 

connect to LuxR (product of luxR) at a certain level, 

activating transcription of luxI and the luciferase 

genes [18]. AHL-mediated QS systems based on the 

LuxI/R pattern have been distinguished in human 

pathogens like P.aeruginosa [27], Yersinia 

pseudotuberculosis and Escherichia coli [28], and 

plant linked bacteria like Rhizobium leguminosarum 

[29], Erwinia carotovora and Ralstonia solanacearum 

[30]. In every case, QS systems can control virulence. 

Thus, the innovation of QS has given us a novel target 

to attack and attenuate bacterial pathogenicity [31-34].  

3. Mechanisms of QS Inhibition  

There are numerous ways to inhibit cell-cell 

communication together with competitive inhibition, 

signal binding, signaling molecule degradation, and 

inhibition of upstream precursor or genetic regulation 

system [35]. These antagonists are based on the C12-

AHL composition and cause a decline in LasR 

activity. AHL-antibodies developed to suppress QS 

during signal binding [36, 37]. A C12-AHL-protein 

conjugate was capable to reduce lasB expression, and 

a like molecule with greatly binding affinity for C12-

AHL. Blocking the S-adenosyl methionine (SAM) or 

the fatty acid precursors essential to synthesize AHLs, 

reduced  formation of the C12-AHL by LasI [38]. The 

genetic alteration of the upstream regulators such as 

Vfr and GacA has been shown to significantly reduce 

the QS action [39]. Various bacteria with Bacillus sp., 

Arthrobacter sp., Variovorax paradoxus and A. 

tumefaciens create lactonases, enzymes that cleave 

and neutralize the lactone ring of various AHLs [40, 

41]. Lactonase expression in P. aeruginosa, outcome 

in a considerable reduces in AHL making and 
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virulence factor expression. The sensible use of anti-

QS in drug resistant bacteria therapy is due to the 

increased occurrence of the drug failure by various 

pathogenic bacteria developing resistance to the 

presently used antibiotics [42, 43]. 
   

 
Figure 1. Three pathways of QS Inhibition in P. aeruginosa AHL mediated QS. 

4. Pseudomonas Aeruginosa  

Pseudomonas aeruginosa is an aerobic bacillus, 

Gram-negative, with length and width of 1.5-3.0 μm 

and 0.5-0.8 μm, respectively. It is motile, single polar 

flagella, oxidase-positive, non-fermentative and non-

sporulating species [44]. Other diagnostic features are 

beta-hemolysis of blood agar, pigment formation 

together with pyocyanin (blue-green), pyorubin (red-

brown), pyoverdin (yellow-green), and the distinctive 

grape-like odor. It is a ubiquitous organism with the 

capability to colonize varied role due to its range of 

metabolic and resistance abilities to the ecological 

faces [45].  

5. Virulence Factors and Toxins  

he pathogenicity of P. aeruginosa is a massive 

amount of secreted toxins and virulence factors such 

as rhamnolipid, superoxide dismutase, HCN, exotoxin 

A, phospholipase C, exoenzyme, pyoverdin, 

pyocyanin, LasA protease, and LasB elastase. Some 

of these factors may result in tissue necrosis and cell 

death. Pyoverdin, a yellow-green florescent pigment 

formed by P. aeruginosa to compete with mammalian 

transferrin for iron, the misuse of which really starves 

the host tissues [46]. It also encourages pathogenicity 

by exciting the bacterial growth [47]. LasA and LasB 

are zinc metallo-endopeptidases, belonging to the 

proteases family β-lytic endopeptidase enzyme. LasA 

has partial substrate specificity compared with the 

LasB; however, they play a key role in tissue 

plasticity in terms of elastin degradation. LasA cut 

elastin permitted it to be cleaved by LasB and other 

proteases. These proteases are capable of inactivating 

a extensive range of tissues and immunological agents 

[48, 49]. 

6. Pseudomonas Aeruginosa Disease Association  

Due to the affinity to form obstinate biofilms, P. 

aeruginosa is not one of the microbes implicated in 

nosocomial infections. The P. aeruginosa is the 

second most ordinary cause of nosocomial pneumonia 

(17% of isolated microbes), the third most frequent 

cause of urinary tract infections (11%), fourth in 

bacterial species dependable for nosocomial infections 

(9%), the fifth most frequent cause of surgical site 

infections (8 %), and sixth most frequent isolated 

blood stream pathogens (3%) [1]. P. aeruginosa has 

only augmented in occurrence and antibiotic 

resistance, creating an exact threat for the vulnerable 

patients. P. aeruginosa has the capability to colonize 

various diverse infection sites when the host immune 

system is compromised. This can happen in patients 

with a severe basic condition such as AIDs, cancer, 

burn wounds, immune suppression from surgery, and 

organ transplant [50, 51]. Neonates are also very 

vulnerable to P. aeruginosa infection due to their 

immature immune system [52]. P. aeruginosa enter 

the body by any orifice and minor infections that may 

progress into severe and critical infections. In the 

ophthalmological system, P. aeruginosa can colonize 

and infect the cornea, aqueous humors and vitreous 

humors, or nearby structures after cataract or curative 

surgery. P. aeruginosa has been linked with a rising 

number of cases in contact lens-related kerititis [53]. 

Infections can growth rapidly from minor 

conjunctivitis or kerititis to scleral wounds and 

corneal ulcers due to cell lysis by P. aeruginosa 

extracellular enzymes. P. aeruginosa may also 

colonize in the auditory canal and cause minor otitis 

externa to inner ear problems (otitis media) [54]. 

Lacking proper handling secondary infections of the 

nearby bones (mastoiditis) or neurological structures 

can happen [55-58].  

Distraction of the gastrointestinal (G.I) system often 

happens in pediatric patients or those with neutropenia 

or blood linked disorders [59]. Colonization in the 

gastro-intestine can range from diarrhea to severe 

rectal wounds and necrotizing enterocolitis in patients. 

Urinary tract infections (UTIs) are general due to 

regular catheterization and the existence of drug 

resistant bacteria [60]. If left unrestricted, these 

infections can lead to kidney disorders and renal 

failure. Proximal bone infections like osteomylitis of 

the lumbosacral vertebrae and pelvis can happen as a 

secondary hurdle to UTIs [61]. The P. aeruginosa 

infection can also happen by an scrape or break in the 

skin, due to wound, surgery, catheterization and 

dermatological conditions like dermatitis or folliculitis 

[62] to life threatening cases of cellulitis or 
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necrotizing fascitis. Infections with deep tissue injure 

particularly in burning state can extend to the 

bloodstream, causing bacteremia and septicemia [44]. 

Blood borne P. aeruginosa can go to heart, causing 

endo-and pericarditis. Complications in the pulmonary 

system can start as sinusitis or an upper respiratory 

tract infection and lead to pneumonia, bronchitis, or 

pulmonary lesions. Infections of the sinuses can also 

cause meningitis and cerebral lesions due to the 

nearness to the brain.  

7. Current Treatment Procedures  

The current treatment procedures can vary greatly 

since a patient may be infected with one or more drug 

resistant P. aeruginosa strains. Therapeutic tactics to 

treat infections are including the use of a single 

antibiotic or combination of two or three antibiotics 

drugs. Monotherapy has normally dealing with β-

lactam antibiotics such as penicillins, cephalosporins, 

or newer β-lactams like imipenem and meropenem. 

These antibiotics act by interfere with the production 

of peptidoglycan into bacterial cell walls. 

Unfortunately, P. aeruginosa has evolved an efficient 

way of inactivating these drugs, leading to a novel 

approach for the treatment [63].  

Anti-pseudomonal mixtures are including a 

combination of a β-lactam like aztreonam, ticarcillin 

or ceftazidime plus a β-lactamase inhibitor like 

sulbactam, and aminoglycoside antibiotic like 

tobramycin or amikacin. Aminoglycosides are 

interfering with protein production by binding to the 

30S ribosomal subunit of the bacterial cells. 

Combinations of ceftazidime and fluoroquinolone like 

ciprofloxacins are also effective. The quinolones are 

exhibiting their bactericidal action by blocking DNA 

replication through inhibition of gyrase [64]. Option 

combinations include pairing ciprofloxacin with 

animoglycoside or with the broad-spectrum antibiotic 

fosfomycin, which prevent cell wall formation by 

inhibiting production of N-acetylmuramic acid [65]. 

However, there are a few achievements in eliminating 

P. aeruginosa with these treatments, many patients 

need continuing treatment and toxicity can extend 

with the recurrent use. There is an increased trend of 

antibiotic resistance that will quickly provide this 

therapeutics uselessness.  

8. Antibiotic Resistance in Pseudomonas 

Aeruginosa  

A21.1% of the nosocomial infections were imipenem 

resistant which enhanced 15% over the last five years 

(1998-2002). Similarly, 29.5% of P. aeruginosa 

infections were resistant to quinolones and 31.9% 

were resistant to cephalosporins, which enhanced 9% 

and 20% over the previous five years, respectively [1]. 

The encouragement of antibiotic resistance occurred, 

either through overuse and successive mutation or via 

gene transfers. The more recently acquired resistance 

mechanisms P. aeruginosa has several factors that are 

measured intrinsic. The pathogenic strains of P. 

aeruginosa possess creative mechanisms which 

reduced antibiotics vulnerability including:  

A. Biofilm development  

B. Restricted surface accessibility  

C. Exclusion via efflux pumps  

D. Enzymatic inactivation of antibiotics  

E. Modification of target proteins  

A. Biofilm formation  

The planktonic method for bacterial growth has been 

widely studied, and it was found that most of the 

bacteria survive in nature as component of a surface-

adherent, matrix-enclosed biofilm [11]. P. aeruginosa 

is not an exception to this rule, and some strain of it 

can control a mucoid phenotype through infections 

[63]. Due to the secretion of an exopolysaccharide, 

biofilm cells form a slime layer in which they are 

permanently bound to a substratum and to each other 

[66]. This protected pattern results in changing the 

growth rates, transcription patterns, , an improved 

ecological resistance from that of their planktonic 

counter parts [67]. Antimicrobials are prohibited from 

getting the innermost cells of a biofilm and are 

therefore incapable to completely eliminate the 

infection [68]. The alginate layer of mucoid P. 

aeruginosa avoids optimal host immune role by 

masking antibody opsonization and inhibiting 

clearance [69]. The latter is accomplished by 

promoting permanent adherence of the bacteria to 

lung epithelial cells [70-72].  

9. Pseudomonas aeruginosa QS specifics  

Complexity in treating obstinate infections and the 

growing resistance to antibiotics, new remedial tactics 

are becoming more necessary. Targeting the QS 

system of P. aeruginosa, one of the main complicated 

pathogens in the lung, is an original plan of attack. 

This arrangement is a key controller of pathogenicity 

in P. aeruginosa and other relevant bacteria, thus 

inhibition of QS may decrease the virulence and 

defend against infections [73, 74]. The QS system of 

P. aeruginosa is based on the luxI-luxR prototype. 

This complicated QS communication system is 

reflected in various gram-negative bacteria, where it 

manages regulation of virulence with biofilm creation, 

motility, and toxin creation [75]. P. aeruginosa 

complicated two main sets of QS systems: lasI-lasR 

and rhlI-rhlR [41]. The LuxI homologues, LasI and 

RhlI, are synthetases that produce the autoinducer 

signaling molecules N-butanoyl-L-homoserine lactone 
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(BHL), and N-(3-oxododecanoyl)-L-homoserine 

lactone (OdDHL) respectively [76]. These signaling 

molecules diffuse out into the environment, reaching a 

supposed threshold meditation that may activate the 

receptors lasR and rhlR [77]. These receptors 

coordinate directive of pathogenicity through 

transcriptional activation of various virulence factors 

[78, 79]. A third signal, PQS (Pseudomonas 

Quinolone Signal) plays an essential role in the QS 

system and is concerned in the creation of N-(3-

oxohexanoyl)-L-homoserine lactone (OHHL) [75, 

77]. This secondary metabolite of P. aeruginosa is 

included into the QS hierarchy in times of cell stress, 

and interfering with this signal has been shown reduce 

virulence factor phrase [80] and a fourth system exists 

regulated by cyclic dipeptides (DKPs) [81]. This study 

focuses on the las and rhl systems [82]. The 

superfluous and auto-regulatory nature of the QS 

system is fairly complex [83], the P. aeruginosa QS 

hierarchy suggests that las controls rhl with virulence 

proteins [41]. The virulence factors LasA 

(staphylolytic protease) and LasB (elastase) are under 

control of the lasI/R system [84], however rhlI/R also 

controls effect to a lesser amount [85]. Pyoverdin is 

under rhlI/R control [85], whereas biofilm formation 

is partially under QS control [67]. The las-rhl system 

also falls under the umbrella of various “global” 

regulators like Vfr (homologue of E. coli cAMP 

receptor protein, CRP) [39] or GacA (sRNA binding 

protein) [78]. Control from these genes also influence 

downstream virulence and thus to inhibit 

pathogenicity and a therapeutic agent could display an 

effect directly on the las/rhl system or the PQS or 

DKP pathways.  The halogenated furanones inhibit P. 

aeruginosa both in vitro and in a murine models [86, 

87]. These compounds act by transferring the 

signaling molecule from its receptor, thus accelerate 

receptor turnover [88, 89]. They also have persuaded 

on siderophore biosynthesis [90].  

10.  Ethnobotany and Ethnopharmacognosy: 

Looking to the past for explanation of the future  

The excess use of antibiotics began a rising tendency 

of resistance in various pathogens. Even though 

combinatorial and synthetic chemistry can offer us 

with some clarification for infectious diseases, various 

medicinal compounds already present in nature and 

are pending to detection [91-93]. The high biological 

range is a possible linked to high chemical 

multiplicity, allow for the development of many toxic 

and bioactive plant substances. Plants create precise 

compounds to provide desires like reproduction and 

defense [3, 9, 76]. Plants have evolved toxic and 

bioactive substances to defend against herbivores and 

pathogen attacks [94] because plants have relied more 

heavily on chemical defenses than motile organisms. 

In lots of cases, the connection between toxin and 

medicine is dosage, and numerous plant toxins have 

originate their way into pharmacopoeia, example, 

foxglove or Digitalis spp., if ingested, can generate 

convulsions, bradycardia, cerebral disturbances and 

eventual death [95]. Though, at the correct dosage, the 

cardiac glycosides digoxin and digitoxin have 

effective in the treatment of atrial fibrillation and heart 

failure [96].  

11.  Advantages of a directed search 

Large numbers of plants with chemical variety are the 

basis for testing medicinal compounds [97]. Though, 

unite these natural qualities of plants make even better 

place in search for new drugs. Most plants have some 

type of constitutive or inducible resistance against 

pathogens, but plants used medicinally may also have 

chemical defenses to human pathogens [98].  

12.  Relating traditional and modern medicines 

Expressive the traditional use of the plants can guides 

drug discovery and giving an idea of its potential use 

in the society. For example, plants used as snakebite 

medication may be useful in discovery hypotensive 

drugs. If an individual wants to survive the bite of a 

snake, it is beneficial to lower the blood pressure and 

slow the heart rate so as to not reach the venom or 

poison to susceptible organs before it could be 

metabolized. This led to the finding of hypotensive 

alkaloids in Rauwolfia (Apocynaceae) spp., [99]. 

Ethnopharmacology is beneficial to traditional 

medicinal societies and support to modern scientific 

methods to help and improve healthcare in rural areas. 

The ethno-pharmacology study would begin with the 

cultural anthropology of a group and their medical 

system in the context of culture and include local 

medical data to avoid loss of information to upcoming 

generation. The botanical, chemical, and 

pharmacological studied of the plants give potentially 

useful and unique medicinal drugs. Each of these parts 

(botany, anthropology, pharmacology and chemistry) 

could take time to fully explore. Thus, most studies 

focused on aspect of ethnopharmacology depending 

on the expertise and interests of the investigators.  

13.  Botanicals as anti-bacterial therapies  

Various ethno-botanical explored for antibacterials, 

confirmed not only the requirement for drugs but also 

the numerous plant species that utilized for bacterial 

circumstances [100]. While medicinal plant researches 

have led to the discovery of various key drugs like 

morphine, quinine, camptothecin and paclitaxel, there 

is not a huge degree of overlap between generally 

used plant drugs and antimicrobials [101-105]. 
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14.  Tea tree oil  

Melaleuca alternifolia Cheel (Myrtaceae)/tea tree is 

an aromatic tree. The essential oil of M. alternifolia is 

a topical antimicrobial, its activity has attributed to 

terpinen-4-ol, a main mono-terpenoid of the oil [10]. 

Other terpene constituents include γ-terpinene, α-

terpineol, cineole and p-cymene [99]. Monoterpenoids 

are present mainly in plants with volatile oils like 

those in the Lamiaceae, Myrtaceae, and Rutaceae. 

These compounds causes membrane disruption in 

bacteria (Cowan 1999).  

15.  Oregano oil  

Origanum vulgare L. (Lamiaceae) is a herb, essential 

oil fraction is effective against bacterial and fungal 

infections in gastrointestinal and genitourinary tract 

[106,107]. Its antimicrobial activity is recognized to 

the phenolic monoterpenoids, carvacrol and thymol, 

along with various other terpene alcohols, phenols and 

sesquiterpenes [108]. The two main chemotypes of O. 

vulgare showed either high thymol or high carvacrol 

substance [108], both are antimicrobial [100], though 

the latter is more effective [109].  The antimicrobial 

effect is due to membrane disruption [109] Oil of 

oregano has shows antibacterial effect against 

Helicobacter pylori, a causative agent of gastric ulcers 

[107], and a various clinically isolated pathogens 

including Haemophyllus influenzae, Staphylococcus 

aureus, E. coli, Streptococcus pneumoniae, and 

Enterobacter cloacae [110] and also effect in vitro 

against C. albicans.  

16.  Myrrh  

Myrrh is a oleo-gum resin of Commiphora Jacq. 

species of Buseraceae family. It contained mainly 

aromatic peeling bark. Commiphora bark is achieved 

to collect the resin and has religious and medicinal use 

[100,106]. It is usually used in mouthwashes and 

toothpastes due to its antimicrobial effects. Myrrh 

consists of about 30-60% water soluble gum, 20-40% 

alcohol soluble resin and 8% volatile oils. The volatile 

oils fraction contains antimicrobial mono-terpenes 

like α-camphorine, myrcene and also 

furanosesesquiterpenes. The antibacterial effects of 

Commiphora mulkul (Commiphora wightii (Arn.) 

Bhandari) was showed in vitro antibacterial effect 

against various Gram positive and Gram negative 

bacteria [111]. It is also used for topically on wounds 

and oral and pharyngeal mucosa as a mouthwash 

[106].  

17.  Unused potential of plants for antimicrobial 

action  

Plants are the main source of antimicrobial agents. In 

fact, about 75% of the antibiotics are derived from the 

actinomycetes (group of Gram-positive bacteria) 

[112]. Antibiotic-creating microbes possess genes 

which defend them from the toxic property of these 

compounds. It is easy for microbe to acquire antibiotic 

resistance through plasmid transfer or transposons. 

Plants are genetically dissimilar from the organisms 

they are trying to eradicate. There is small chance for 

a microbe to gain resistance from a plant. Plants 

produce a multitude of diverse antimicrobials like 

phenolics, flavanones, catechins, quinones, alkaloids, 

polyphenolics, and terpenoids [100]. Like antibiotics, 

these agents are targeted at killing the pathogen and 

work via a non-species specific means like disrupting 

microbial cell membranes. Plants have other way of 

deal with microbes-targeting cell’s communication 

system or QS [12]. Breakdown of this system causes 

an attenuation of microbial pathogenicity [87]. The 

discovery of anti-QS agents in plants provides us with 

yet another type of antimicrobial agents.  

18.  Anti-Quorum Sensing from Ethnobotanicals 

TDiscovery of compounds that inhibit QS, could 

provide a novel method of combating infection [42]. 

Anti-QS agents were first depicted in the red marine 

alga Delisea pulchura. This alga has anti-fouling 

property and contains halogenated furanones which 

block AHLs via competitive inhibition and 

destabilization of LuxR. The structural similarity 

allows furanones to inhibit the effect of AHL 

signaling molecules [89]. The QS inhibition defends 

themselves against the other microbes. Plant, bacteria, 

and fungi could produce compound which interfere 

the QS-regulated gene expression in pathogenic 

microbes [113, 114]. The discovery of AHL inhibitors 

in D. pulchura, anti-QS activity has found Caulerpa 

species and various higher plants including fruits and 

vegetables [115-117]. Pisum sativum (pea) seedlings 

and root exudates formed an inhibition of pigment 

production, exochitinase effects and protease activity 

in C. violaceum [116]. Carrot (Daucus carota), 

chamomile (Matricaria sp.), garlic (Allium sativum), 

water lily (Nymphaea sp.) and various peppers 

(Capsicum spp.) were possessing anti-QS activity 

against a luxI-gfp reporter strain. Toluene extracts of 

garlic exhibited anti-QS activity against Gram-

negative transcriptional regulators Lux R or Las R 

[114]. Garlic can also inhibit biofilm formation in P. 

aeruginosa, and prevent nematode death [115]. Garlic 

and several plants such as Thymus vulgaris may 

intensify the killing effect against the Pseudomonas 

species [117,118]. Rosmarinic acid excreted from the 

root of sweet basil, is a caffeic acid ester with an 

inhibitory action on Pseudomonas species which may 

interfere with QS activity and bioflim formation 

[119]. Various fruits and herbs were found to have 

anti-QS activity in a C. violaceum strain and on the 

swarming motility of E. coli and P. aeruginosa [117].  
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Blueberry, raspberry, blackberry, cranberry, grape, 

ginger, oregano, kale, and turmeric exhibited 

moderate anti-QS actionv. Other than signal mimics 

like furanones, ellagic acid, tannic acid, and 

epigallocatechin gallate have shown anti-QS action in 

both an E. coli and P. aeruginosa strain [120]. The 

polyphenolics should be explored as anti-QS 

compounds. The antipathogenic anti-QS effects were 

exhibited with Laurus nobilis leaves, fruits, flowers, 

and bark extracts. The S. oleraceus exhibited 

prominent anti-QS activity, almost equals to L. nobilis 

extracts. Rosmarinus officinalis and Tecoma capensis 

leaves revealed moderate anti-QS activity. Weak anti-

QS effects were observed with extracts of Populus 

alba (leaves), Jasminum sambac (flowers and leaves) 

and Populus nigra. Day by day anti-QS effects of 

several extract of natural plants extracts have been 

reported. Hexane extract of clove bud (Syzygium 

aromaticum) has significant anti-QS influence on the 

P. aeruginosa strains [121,122]. Capparis spinosa 

traditionally used in Italy, posses’ antibacterial 

activity [123], methanolic extract of fruit of C. 

spinosa showed anti-QS activity on P. aeruginosa 

PAO1 strain [124]. Methanolic extract of the 

Myristica cinnamomea bark also have anti-QS action 

[125]. Lagerstroemia speciosa, known as ‘jarul’ 

prevalent in south-east Asia, revealed that this plant 

can modulate the QS of micro-organism specially P. 

aeruginosa. Lagerstroemia speciosa can attenuate 

QS-related genes (las andrhl) and their particular 

signalling molecules such as N-acylhomoserine 

lactones, but interestingly not affecting their growth 

by using a specific strain P. aeruginosa PAO1.  

Extract of Melicope lunu-ankenda edible plant of 

Malasyia, showed proficient anti-QS against P. 

aeruginosa PAO1. Some Chinese traditional system of 

medicine such as Cnidium monnieri, Angelica 

sinensis, Astragalus membranaceus, Aloe barbadensis, 

Lilium brownii, Crataegus cuneata, Dioscorea 

nipponica, Magnolia officinalis, and Ephedra revealed 

some activity against the pathogenic microbes 

including, C. violaceum and P. aeruginosa [127-130]. 

19.  Conclusions 

The plants have been used as a source of different 

types of medicinal compounds. Many 

ethnobotanically searches showed that these natural 

agents can be used as anti-pathogenic agents, mainly 

focused on antibacterial effects. Our focus on to anti-

QS and anti-virulence property that may reveal 

quorum-quenching (QQ) compounds from plants for 

provide a novel method for the treatment of infections 

against resistant microbial strains particularly against 

P. aeruginosa. The actions of the plant extracts on P. 

aeruginosa are very complicated and perhaps beyond 

the area of the QS control hypothesis. The failure of 

accessible antibiotics to control the infectious makes it 

critical to find options to presently used drugs. The 

pathogenicity in numerous bacteria is regulated by QS 

that is the key regulator of virulence and biofilm 

construction in P. aeruginosa and other bacteria. 

Various plants extracts were showed effects on P. 

aeruginosa virulence factors and the QS has 

significant inhibition of LasA protease, LasB elastase, 

pyoverdin, and biofilm formation. In fact, anti-QS 

approach has shown promise in combat against the P. 

aeruginosa infections. However, the decrease of QS 

gene expression and signaling molecule levels and 

effect on virulence factor formation offer these plants 

were used in the future to combat P. aeruginosa and 

other bacterial infections. 
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