Document Type: Review Article


Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia



Fingerprint (FP) is a global mark used for personal identification. This study reviews recent latent fingerprint (LFP) enhancement techniques including metal oxides, multi-metal deposition (MMD-I/II/SMD/Au-ASP), optical, chemical, physical, and physicochemical. Furthermore, analytical techniques involved in identification, evaluation, and determination of pieces of evidence, and perpetrators including the SEM, TEM, UV-Vis, IR/NIR, SERS, SKP, DLS, MALDI-MSI, and TD analysis were also discussed. Among numerous LFP enhancement techniques, the application of chemical methods in combination with optical techniques has a greater place to recover FPs with sufficient quality. However, instead of using such a complex and costly enhancing agent, nowadays nanotechnology is using specific techniques used for visualizing, inspecting, gathering, and analyzing trace evidence at the scene of a crime. To indicate using simple metal oxides such as ZnO that have superior fluorescent properties and also that consider both the surface and cost of the materials, enhancement of the LFP is functioning.

Graphical Abstract


[1]      Gino, S., & Omedei, M. (2011). Effects of the most common methods for the enhancement of latent fingerprints on DNA extraction from forensic samples. Forensic Science International: Genetics Supplement Series3(1), e273-e274.

[2]      Subhani, Z., Daniel, B., & Frascione, N. (2019). DNA Profiles from Fingerprint Lifts—Enhancing the Evidential Value of Fingermarks Through Successful DNA Typing. Journal of forensic sciences64(1), 201-206.

[3]      Huynh, C., Brunelle, E., Halámková, L., Agudelo, J., & Halámek, J. (2015). Forensic identification of gender from fingerprints. Analytical chemistry87(22), 11531-11536.

[4]      Champod, C., Lennard, C. J., Margot, P., & Stoilovic, M. (2017). Fingerprints and other ridge skin impressions. CRC press.

[5]      Leśniewski, A. (2016). Hybrid organic–inorganic silica based particles for latent fingermarks development: a review. Synthetic Metals222, 124-131.

[6]      Brown, R. M., & Hillman, A. R. (2012). Electrochromic enhancement of latent fingerprints by poly (3, 4-ethylenedioxythiophene). Physical Chemistry Chemical Physics14(24), 8653-8661.

[7]      Qin, G., Zhang, M., Zhang, Y., Zhu, Y., Liu, S., Wu, W., & Zhang, X. (2013). Visualizing latent fingerprints by electrodeposition of metal nanoparticles. Journal of Electroanalytical Chemistry693, 122-126.

[8]      Xu, L., Li, Y., He, Y., & Su, B. (2013). Non-destructive enhancement of latent fingerprints on stainless steel surfaces by electrochemiluminescence. Analyst138(8), 2357-2362.

[9]      Xu, L., Zhou, Z., Zhang, C., He, Y., & Su, B. (2014). Electrochemiluminescence imaging of latent fingermarks through the immunodetection of secretions in human perspiration. Chemical Communications50(65), 9097-9100.

[10]    Becue, A., Scoundrianos, A., & Moret, S. (2012). Detection of fingermarks by colloidal gold (MMD/SMD)–beyond the pH 3 limit. Forensic science international219(1-3), 39-49.

[11]    Choi, M. J., McDonagh, A. M., Maynard, P., & Roux, C. (2008). Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic science international179(2-3), 87-97.

[12]    Deepthi, N. H., Basavaraj, R. B., Sharma, S. C., Revathi, J., Sreenivasa, S., & Nagabhushana, H. (2018). Rapid visualization of fingerprints on various surfaces using ZnO superstructures prepared via simple combustion route. Journal of Science: Advanced Materials and Devices3(1), 18-28.

[13]    Abdelwahab, W. M., Phillips, E., & Patonay, G. (2018). Preparation of fluorescently labeled silica nanoparticles using an amino acid-catalyzed seeds regrowth technique: Application to latent fingerprints detection and hemocompatibility studies. Journal of colloid and interface science512, 801-811.

[14]    Fernandes, D., Krysmann, M. J., & Kelarakis, A. (2016). Carbogenically coated silica nanoparticles and their forensic applications. Chemical Communications52(53), 8294-8296.

[15]    Theaker, B. J., Hudson, K. E., & Rowell, F. J. (2008). Doped hydrophobic silica nano-and micro-particles as novel agents for developing latent fingerprints. Forensic Science International174(1), 26-34.

[16]    Becue, A., Moret, S., Champod, C., & Margot, P. (2009). Use of quantum dots in aqueous solution to detect blood fingermarks on non-porous surfaces. Forensic science international191(1-3), 36-41.

[17]    Beresford, A. L., Brown, R. M., Hillman, A. R., & Bond, J. W. (2012). Comparative study of electrochromic enhancement of latent fingerprints with existing development techniques. Journal of forensic sciences57(1), 93-102.

[18]    Cadd, S., Islam, M., Manson, P., & Bleay, S. (2015). Fingerprint composition and aging: a literature review. Science & Justice55(4), 219-238.

[19]    Dhall, J. K., Sodhi, G. S., & Kapoor, A. K. (2013). A novel method for the development of latent fingerprints recovered from arson simulation. Egyptian Journal of Forensic Sciences3(4), 99-103.

[20]    Scotcher, K., & Bradshaw, R. (2018). The analysis of latent fingermarks on polymer banknotes using MALDI-MS. Scientific reports8(1), 8765.

[21]    Schnetz, B., & Margot, P. (2001). latent fingermarks, colloidal gold and multimetal deposition (MMD): Optimisation of the method. Forensic Science International118(1), 21-28.

[22]    Sodhi, G. S., & Kaur, J. (2017). Multimetal deposition method for detection of latent fingerprints: a review. Egyptian Journal of Forensic Sciences7(1), 17.

[23]    Fairley, C., Bleay, S. M., Sears, V. G., & NicDaeid, N. (2012). A comparison of multi-metal deposition processes utilising gold nanoparticles and an evaluation of their application to ‘low yield’surfaces for finger mark development. Forensic science international217(1-3), 5-18.

[24]    Sapstead, R. M., Corden, N., & Hillman, A. R. (2015). Latent fingerprint enhancement via conducting electrochromic copolymer films of pyrrole and 3, 4-ethylenedioxythiophene on stainless steel. Electrochimica Acta162, 119-128.

[25]    Zhang, M., Becue, A., Prudent, M., Champod, C., & Girault, H. H. (2007). SECM imaging of MMD-enhanced latent fingermarks. Chemical Communications, (38), 3948-3950.

[26]    Becue, A., Scoundrianos, A., Champod, C., & Margot, P. (2008). Fingermark detection based on the in situ growth of luminescent nanoparticles—Towards a new generation of multimetal deposition. Forensic Science International179(1), 39-43.

[27]    Zhang, M., Qin, G., Zuo, Y., Zhang, T., Zhang, Y., Su, L., ... & Zhang, X. (2012). SECM imaging of latent fingerprints developed by deposition of Al-doped ZnO thin film. Electrochimica Acta78, 412-416.

[28]    Lodha, A. S., Pandya, A., & Shukla, R. K. (2016). Nanotechnology: an applied and robust approach for forensic investigation. Forensic Res Criminol Int J2(1), 00044.

[29]    Pandya, A., & Shukla, R. K. (2018). New perspective of nanotechnology: role in preventive forensic. Egyptian Journal of Forensic Sciences8(1), 57.

[30]    Renuka, L., Anantharaju, K. S., Vidya, Y. S., Nagaswarupa, H. P., Prashantha, S. C., Sharma, S. C., ... & Darshan, G. P. (2017). A simple combustion method for the synthesis of multi-functional ZrO2/CuO nanocomposites: Excellent performance as Sunlight photocatalysts and enhanced latent fingerprint detection. Applied Catalysis B: Environmental210, 97-115.

[31]    Basavaraj, R. B., Nagabhushana, H., Darshan, G. P., Sharma, S. C., & Venkatachalaiah, K. N. (2017). Ultrasound assisted rare earth doped Wollastonite nanopowders: labeling agent for imaging eccrine latent fingerprints and cheiloscopy applications. Journal of Industrial and Engineering Chemistry51, 90-105.

[32]    Basavaraj, R. B., Nagabhushana, H., Darshan, G. P., Prasad, B. D., Rahul, M., Sharma, S. C., ... & Archana, K. V. (2017). Red and green emitting CTAB assisted CdSiO3: Tb3+/Eu3+ nanopowders as fluorescent labeling agents used in forensic and display applications. Dyes and Pigments147, 364-377.

[33]    Guzman, M., Flores, B., Malet, L., & Godet, S. (2018). Synthesis and characterization of zinc oxide nanoparticles for application in the detection of fingerprints. In Materials science forum (Vol. 916, pp. 232-236). Trans Tech Publications.

[34]    Yu, I. H., Jou, S., Chen, C. M., Wang, K. C., Pang, L. J., & Liao, J. S. (2011). Development of latent fingerprint by ZnO deposition. Forensic science international207(1-3), 14-18.

[35]    Arshad, A., Farrukh, M. A., Ali, S., Khaleeq‐ur‐Rahman, M., & Tahir, M. A. (2015). Development of latent fingermarks on various surfaces using ZnO‐SiO2 nanopowder. Journal of forensic sciences60(5), 1182-1187.

[36]    Dhall, J. K., & Kapoor, A. K. (2016). Development of latent prints exposed to destructive crime scene conditions using wet powder suspensions. Egyptian Journal of Forensic Sciences6(4), 396-404.

[37]    Amin, M. O., Madkour, M., & Al-Hetlani, E. (2018). Metal oxide nanoparticles for latent fingerprint visualization and analysis of small drug molecules using surface-assisted laser desorption/ionization mass spectrometry. Analytical and bioanalytical chemistry410(20), 4815-4827.

[38]    Tiwari, A. K., Alaoui, I. M., Guddala, S., & Ramakrishna, S. A. (2018). Enhanced visualization of latent fingermarks on rough aluminum surfaces using sequential Au and Zn/ZnS/ZnO depositions. Journal of forensic sciences63(4), 1275-1281.

[39]    Luthra, D., & Kumar, S. (2018, May). The development of latent fingerprints by zinc oxide and tin oxide nanoparticles prepared by precipitation technique. In AIP Conference Proceedings (Vol. 1953, No. 1, p. 030249). AIP Publishing.

[40]    Prabakaran, E., & Pillay, K. (2019). Synthesis and characterization of fluorescent N-CDs/ZnONPs nanocomposite for latent fingerprint detection by using powder brushing method. Arabian Journal of Chemistry.

[41]    Moret, S., Bécue, A., & Champod, C. (2014). Nanoparticles for fingermark detection: an insight into the reaction mechanism. Nanotechnology25(42), 425502.

[42]    Liu, L. (2011). Study on the use of rhodamine doped nanocomposite for latent fingerprint detection. In Advanced Materials Research (Vol. 295, pp. 813-816). Trans Tech Publications.

[43]    Crane, N. J., Bartick, E. G., Perlman, R. S., & Huffman, S. (2007). Infrared spectroscopic imaging for noninvasive detection of latent fingerprints. Journal of forensic sciences52(1), 48-53.

[44]    Williams, D. K., Brown, C. J., & Bruker, J. (2011). Characterization of children's latent fingerprint residues by infrared microspectroscopy: Forensic implications. Forensic Science International206(1-3), 161-165.

[45]    Fritz, P., van Bronswjik, W., Lepkova, K., Lewis, S. W., Lim, K. F., Martin, D. E., & Puskar, L. (2013). Infrared microscopy studies of the chemical composition of latent fingermark residues. Microchemical Journal111, 40-46.

[46]    Girod, A., Xiao, L., Reedy, B., Roux, C., & Weyermann, C. (2015). Fingermark initial composition and aging using Fourier transform infrared microscopy (μ-FTIR). Forensic science international254, 185-196.

[47]    Banas, A., Banas, K., Breese, M. B. H., Loke, J., & Lim, S. K. (2014). Spectroscopic detection of exogenous materials in latent fingerprints treated with powders and lifted off with adhesive tapes. Analytical and bioanalytical chemistry406(17), 4173-4181.

[48]    Maynard, P., Jenkins, J., Edey, C., Payne, G., Lennard, C., McDonagh, A., & Roux, C. (2009). Near infrared imaging for the improved detection of fingermarks on difficult surfaces. Australian Journal of Forensic Sciences41(1), 43-62.

[49]    Errington, B., Lawson, G., Lewis, S. W., & Smith, G. D. (2016). Micronised Egyptian blue pigment: A novel near-infrared luminescent fingerprint dusting powder. Dyes and Pigments132, 310-315.

[50]    Li, B. Y., Zhang, X. L., Zhang, L. Y., Wang, T. T., Li, L., Wang, C. G., & Su, Z. M. (2016). NIR-responsive NaYF4: Yb, Er, Gd fluorescent upconversion nanorods for the highly sensitive detection of blood fingerprints. Dyes and Pigments134, 178-185.

[51]    Wang, M., Li, M., Yang, M., Zhang, X., Yu, A., Zhu, Y., ... & Mao, C. (2015). NIR-induced highly sensitive detection of latent fingermarks by NaYF 4: Yb, Er upconversion nanoparticles in a dry powder state. Nano research8(6), 1800-1810.

[52]    King, R. S., Hallett, P. M., & Foster, D. (2016). NIR− NIR fluorescence: A new genre of fingermark visualisation techniques. Forensic science international262, e28-e33.

[53]    King, R. S., Hallett, P. M., & Foster, D. (2015). Seeing into the infrared: A novel IR fluorescent fingerprint powder. Forensic science international249, e21-e26.

[54]    King, R. S., & Skros, D. A. (2017). Sunlight-activated near-infrared phosphorescence as a viable means of latent fingermark visualisation. Forensic science international276, e35-e39.

[55]    Chadwick, S., Maynard, P., Kirkbride, P., Lennard, C., Spindler, X., & Roux, C. (2011). Use of Styryl 11 and STaR 11 for the Luminescence Enhancement of Cyanoacrylate‐Developed Fingermarks in the Visible and Near‐Infrared Regions. Journal of forensic sciences56(6), 1505-1513.

[56]    King, R. S., Davis, L. W., & Skros, D. A. (2018). The use of longwave reflected UV imaging for the enhancement of cyanoacrylate developed fingermarks: A simple, safe and effective imaging tool. Forensic science international289, 329-336.

[57]    Downham, R. P., Brewer, E. R., King, R. S., & Sears, V. G. (2018). Sequential processing strategies for fingermark visualisation on uncirculated£ 10 (Bank of England) polymer banknotes. Forensic science international288, 140-158.

[58]    de Jong, R., & de Puit, M. (2018). Fluorescent metal organic frameworks for the visual enhancement of latent fingermarks. Forensic science international291, 12-16.

[59]    Barros, H. L., Mileski, T., Dillenburg, C., & Stefani, V. (2017). Fluorescent benzazole dyes for bloodstain detection and bloody fingermark enhancement. Forensic Chemistry5, 16-25.

[60]    Moret, S., Scott, E., Barone, A., Liang, K., Lennard, C., Roux, C., & Spindler, X. (2018). Metal-Organic Frameworks for fingermark detection—A feasibility study. Forensic science international291, 83-93.

[61]    Guo, L., Wang, M., & Cao, D. (2018). A Novel Zr‐MOF as Fluorescence Turn‐On Probe for Real‐Time Detecting H2S Gas and Fingerprint Identification. Small14(17), 1703822.

[62]    Chen, J., Qin, G., Chen, Q., Yu, J., Li, S., Cao, F., ... & Ren, Y. (2015). A synergistic combination of diatomaceous earth with Au nanoparticles as a periodically ordered, button-like substrate for SERS analysis of the chemical composition of eccrine sweat in latent fingerprints. Journal of Materials Chemistry C3(19), 4933-4944.

[63]    Lin, J., Zhang, C., Xu, M., Yuan, Y., & Yao, J. (2018). Surface-enhanced Raman spectroscopic identification in fingerprints based on adhesive Au nanofilm. RSC advances8(43), 24477-24484.

[64]    Connatser, R. M., Prokes, S. M., Glembocki, O. J., Schuler, R. L., Gardner, C. W., Lewis Sr, S. A., & Lewis, L. A. (2010). Toward surface‐enhanced Raman imaging of latent fingerprints. Journal of forensic sciences55(6), 1462-1470.

[65]    Chen, Y. H., Kuo, S. Y., Tsai, W. K., Ke, C. S., Liao, C. H., Chen, C. P., ... & Chan, Y. H. (2016). Dual colorimetric and fluorescent imaging of latent fingerprints on both porous and nonporous surfaces with near-infrared fluorescent semiconducting polymer dots. Analytical chemistry88(23), 11616-11623.

[66]    Barros, H. L., & Stefani, V. (2019). Micro-structured fluorescent powders for detecting latent fingerprints on different types of surfaces. Journal of Photochemistry and Photobiology A: Chemistry368, 137-146.

[67]    Milenkovic, I., Algarra, M., Alcoholado, C., Cifuentes, M., Lázaro-Martínez, J. M., Rodríguez-Castellón, E., ... & Bandosz, T. J. (2019). Fingerprint imaging using N-doped carbon dots. Carbon144, 791-797.

[68]    Venkatachalaiah, K. N., Nagabhushana, H., Basavaraj, R. B., Darshan, G. P., Prasad, B. D., & Sharma, S. C. (2018). Flux blended synthesis of novel Y2O3: Eu3+ sensing arrays for highly sensitive dual mode detection of LFPs on versatile surfaces. Journal of Rare Earths36(9), 954-964.

[69]    Darshan, G. P., Premkumar, H. B., Nagabhushana, H., Sharma, S. C., Prashanth, S. C., & Prasad, B. D. (2016). Effective fingerprint recognition technique using doped yttrium aluminate nano phosphor material. Journal of colloid and interface science464, 206-218.

[70]    Li, L., Shi, L., Zhang, Y., Zhang, G., Zhang, C., Dong, C., ... & Shuang, S. (2019). Excitation-independent hollow orange-fluorescent carbon nanoparticles for pH sensing in aqueous solution and living cells. Talanta196, 109-116.

[71]    Khuu, A., Chadwick, S., Spindler, X., Lam, R., Moret, S., & Roux, C. (2016). Evaluation of one-step luminescent cyanoacrylate fuming. Forensic science international263, 126-131.

[72]    Li, Y., Sun, Y., Deng, Y., Liu, J., Fu, J., Ouyang, R., & Miao, Y. (2019). An AEE-active probe combined with cyanoacrylate fuming for a high resolution fingermark optical detection. Sensors and Actuators B: Chemical283, 99-106.

[73]    Chen, H., Ma, R. L., Fan, Z., Chen, Y., Wang, Z., & Fan, L. J. (2018). Fluorescence development of fingerprints by combining conjugated polymer nanoparticles with cyanoacrylate fuming. Journal of colloid and interface science528, 200-207.

[74]    Xie, H. H., Wen, Q., Huang, H., Sun, T. Y., Li, P., Li, Y., ... & Wang, Q. Q. (2015). Synthesis of bright upconversion submicrocrystals for high-contrast imaging of latent-fingerprints with cyanoacrylate fuming. RSC Advances5(97), 79525-79531.

[75]    Wang, M. (2016). Latent fingermarks light up: facile development of latent fingermarks using NIR-responsive upconversion fluorescent nanocrystals. RSC Advances6(43), 36264-36268.

[76]    James, R. M., & Altamimi, M. J. (2015). The enhancement of friction ridge detail on brass ammunition casings using cold patination fluid. Forensic science international257, 385-392.

[77]    Pitera, M., Sears, V. G., Bleay, S. M., & Park, S. (2018). Fingermark visualisation on metal surfaces: An initial investigation of the influence of surface condition on process effectiveness. Science & Justice58(5), 372-383.

[78]    Girelli, C. M., Lobo, B. J., Cunha, A. G., Freitas, J. C., & Emmerich, F. G. (2015). Comparison of practical techniques to develop latent fingermarks on fired and unfired cartridge cases. Forensic science international250, 17-26.

[79]    Liu, S., Pflug, M., Hofstetter, R., & Taylor, M. (2015). The effect of pH on electrolyte detection of fingermarks on cartridge cases and subsequent microscopic examination. Journal of forensic sciences60(1), 186-192.

[80]    Morrissey, J., Larrosa, J., & Birkett, J. W. (2017). A preliminary evaluation of the use of gun bluing to enhance friction ridge detail on cartridge casings. Journal of Forensic Identification67(3), 313–322.

[81]    Song, Z., Li, Z., Lin, L., Zhang, Y., Lin, T., Chen, L., ... & Wang, X. (2017). Phenyl-doped graphitic carbon nitride: photoluminescence mechanism and latent fingerprint imaging. Nanoscale9(45), 17737-17742.

[82]    Yuan, C., Li, M., Wang, M., & Zhang, L. (2018). Cationic dye-diatomite composites: Novel dusting powders for developing latent fingerprints. Dyes and Pigments153, 18-25.

[83]    Deepthi, N. H., Darshan, G. P., Basavaraj, R. B., Prasad, B. D., & Nagabhushana, H. (2018). Large-scale controlled bio-inspired fabrication of 3D CeO2: Eu3+ hierarchical structures for evaluation of highly sensitive visualization of latent fingerprints. Sensors and Actuators B: Chemical255, 3127-3147.

[84]    Sharma, K. K., Nagaraju, P., Mohanty, M. E., Baggi, T. R. R., & Rao, V. J. (2018). Latent fingermark development using a novel phenanthro imidazole derivative. Journal of Photochemistry and Photobiology A: Chemistry351, 253-260.

[85]    Liu, L., Zhang, Z., Zhang, L., & Zhai, Y. (2009). The effectiveness of strong afterglow phosphor powder in the detection of fingermarks. Forensic Science International183(1-3), 45-49.

[86]    Saif, M. (2013). Synthesis of down conversion, high luminescent nano-phosphor materials based on new developed Ln3+: Y2Zr2O7/SiO2 for latent fingerprint application. Journal of Luminescence135, 187-195.

[87]    Wu, P., Xu, C., Hou, X., Xu, J. J., & Chen, H. Y. (2015). Dual-emitting quantum dot nanohybrid for imaging of latent fingerprints: simultaneous identification of individuals and traffic light-type visualization of TNT. Chemical science6(8), 4445-4450.

[88]    Suresh, C., Nagabhushana, H., Darshan, G. P., Basavaraj, R. B., Kavyashree, D., Sharma, S. C., ... & Yadav, H. A. (2018). Facile LaOF: Sm3+ based labeling agent and their applications in residue chemistry of latent fingerprint and cheiloscopy under UV–visible light. Arabian journal of chemistry11(4), 460-482.

[89]    Mortimer, R. J. (1999). Organic electrochromic materials. Electrochimica Acta44(18), 2971-2981.

[90]    Ding, P., Song, G., Zhou, J., & Song, Q. (2015). Collection of rolling fingerprints by the electrochromism of Prussian blue. Dyes and Pigments120, 169-174.

[91]    Beresford, A. L., & Hillman, A. R. (2009). Electrochromic enhancement of latent fingerprints on stainless steel surfaces. Analytical chemistry82(2), 483-486.

[92]    Malik, A. H., Kalita, A., & Iyer, P. K. (2017). Development of well-preserved, substrate-versatile latent fingerprints by aggregation-induced enhanced emission-active conjugated polyelectrolyte. ACS applied materials & interfaces9(42), 37501-37508.

[93]    Schultz, C. W., Wong, J. X., & Yu, H. Z. (2018). Fabrication of 3D Fingerprint Phantoms via Unconventional Polycarbonate Molding. Scientific reports8(1), 9613.

[94]    Jones, B. J., Reynolds, A. J., Richardson, M., & Sears, V. G. (2010). Nano-scale composition of commercial white powders for development of latent fingerprints on adhesives. Science & Justice50(3), 150-155.

[95]    Wightman, G., Emery, F., Austin, C., Andersson, I., Harcus, L., Arju, G., & Steven, C. (2015). The interaction of fingermark deposits on metal surfaces and potential ways for visualisation. Forensic science international249, 241-254.

[96]    Moret, S., Spindler, X., Lennard, C., & Roux, C. (2015). Microscopic examination of fingermark residues: Opportunities for fundamental studies. Forensic science international255, 28-37.

[97]    Goddard, A. J., Hillman, A. R., & Bond, J. W. (2010). High resolution imaging of latent fingerprints by localized corrosion on brass surfaces. Journal of Forensic Sciences55(1), 58-65.

[98]    Challinger, S. E., Baikie, I. D., Flannigan, G., Halls, S., Laing, K., Daly, L., & Daeid, N. N. (2018). Comparison of scanning Kelvin probe with SEM/EPMA techniques for fingermark recovery from metallic surfaces. Forensic science international291, 44-52.

[99]    Williams, G., McMurray, N. (2007). Latent fingermark visualisation using a scanning Kelvin probe. Forensic Science International, 167, 102–109.

[100]  Bradshaw, R., Bleay, S., Wolstenholme, R., Clench, M. R., & Francese, S. (2013). Towards the integration of matrix assisted laser desorption ionisation mass spectrometry imaging into the current fingermark examination workflow. Forensic science international232(1-3), 111-124.

 [101] Francese, S., Bradshaw, R., Ferguson, L. S., Wolstenholme, R., Clench, M. R., & Bleay, S. (2013). Beyond the ridge pattern: multi-informative analysis of latent fingermarks by MALDI mass spectrometry. Analyst138(15), 4215-4228.

[102]  Bright, N. J., Willson, T. R., Driscoll, D. J., Reddy, S. M., Webb, R. P., Bleay, S., ... & Bailey, M. J. (2013). Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions. Forensic science international230(1-3), 81-86.

[103]  Song, D. F., Sommerville, D., Brown, A. G., Shimmon, R. G., Reedy, B. J., & Tahtouh, M. (2011). Thermal development of latent fingermarks on porous surfaces-Further observations and refinements. Forensic Science International, 204, 97–110.

[104]  Wightman, G., & O’Connor, D. (2011). The thermal visualisation of latent fingermarks on metallic surfaces. Forensic science international204(1-3), 88-96.