Document Type: Review Article

Authors

1 Department of Chemistry, Iran University of Science and Technology, Tehran, Iran

2 Department of Chemical Engineering, Payame Noor University, Tehran, Iran

3 Department of Physical Chemistry, Alzahra University, Tehran, Iran

10.33945/SAMI/JCR.2020.1.1

Abstract

Cardiovascular disease (CVD) represents one of the most important health problems. One of the main risk factors for CVD death is the high cholesterol levels. Statins have been shown to lower low-density lipoprotein (LDL) cholesterol levels and the risk of cardiovascular disease, and are currently the first line of treatment for hypercholesterolemia. Atorvastatin is one of the most effective drugs and is part of the blood lipid lowering drug group. This work studies the mechanism of the use of statin family drugs and atorvastatin to determine the clinical requirements for improving the dermatology and the statins.

Graphical Abstract

Keywords

[1] Winslow, R. (2000). Birth of a blockbuster: Lipitor’s unlikely route out of the lab. Wall Street J, 24.

[2] Endo, A. (1992). The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res., 33 (11), 1569.

[3] Rosa, G. M.; Carbone, F.; Parodi, A.; Massimelli, E. A.; Brunelli, C.; Mach, F.; Vuilleumier, N.; Montecucco, F. (2014). Update on the efficacy of statin treatment in acute coronary syndromes. Eur. J. Clin. Invest., 44 (5), 501.

[4] Hongbao, M.; Yan, Y. Streptozotocin, Atorvastatin, Renal, Diabetes and Related Factors.

[5] Adams, S. P.; Tsang, M.; Wright, J. M. (2012). Lipid lowering efficacy of atorvastatin. Cochrane Database Syst. Rev., (12).

[6] Hermann, M.; Bogsrud, M. P.; Molden, E.; Åsberg, A.; Mohebi, B. U.; Ose, L.; Retterstøl, K. (2006). Exposure of atorvastatin is unchanged but lactone and acid metabolites are increased several‐fold in patients with atorvastatin‐induced myopathy. Clin. Pharmacol. Ther., 79 (6), 532.

[7] Christians, U.; Jacobsen, W.; Floren, L. C. (1998). Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar? Pharmacol. Ther., 80 (1), 1.

[8] Tobert, J. A. (2003). Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nature reviews Drug discovery, 2 (7), 517.

[9] Macedo, A. F.; Taylor, F. C.; Casas, J. P.; Adler, A.; Prieto-Merino, D.; Ebrahim, S. (2014). Unintended effects of statins from observational studies in the general population: systematic review and meta-analysis. BMC Med., 12 (1), 51.

[10] Roche, V. F. (2005). Antihyperlipidemic statins: a self-contained, clinically relevant medicinal chemistry lesson. Am. J. Pharm. Educ., 69 (4), 77.

[11] Istvan, E. S.; Deisenhofer, J. (2001). Structural mechanism for statin inhibition of HMG-CoA reductase. Sci, 292 (5519), 1160.

[12] Shepherd, J.; Hunninghake, D. B.; Barter, P.; McKenney, J. M.; Hutchinson, H. G. (2003). Guidelines for lowering lipids to reduce coronary artery disease risk: a comparison of rosuvastatin with atorvastatin, pravastatin, and simvastatin for achieving lipid-lowering goals. The American journal of cardiology, 91 (5), 11.

[13] Liu, J.; Zhang, J.; Shi, Y.; Grimsgaard, S.; Alraek, T.; Fønnebø, V. (2006). Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: a meta-analysis of randomized controlled trials. Chin. Med., 1 (1), 4.

[14] Daugherty, M.; Polanuyer, B.; Farrell, M.; Scholle, M.; Lykidis, A.; de Crécy-Lagard, V.; Osterman, A. (2002). Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J. Biol. Chem., 277 (24), 21431.

[15] Bachhawat, B. K.; Austin, J.; Armstrong, D. (2015). A Cerebroside Sulphotransferase Deficiency in a Human Disorder of Myelin. The National medical journal of India, 28 (3), 161.

[16] Surolia, A. (1997). An outstanding scientist and a splendid human being: Prof Bimal Kumar Bachhawat. Glycobiology, 7 (4), R5.

[17] Stancu, C.; Sima, A. (2001). Statins: mechanism of action and effects. J. Cell. Mol. Med., 5 (4), 378.

[18] Puccetti, L.; Pasqui, A.; Pastorelli, M.; Bova, G.; Cercignani, M.; Palazzuoli, A.; Angori, P.; Auteri, A.; Bruni, F. (2002). Time‐dependent effect of statins on platelet function in hypercholesterolaemia. Eur. J. Clin. Invest., 32 (12), 901.

[19] Roth, B. D. In Prog. Med. Chem.; Elsevier, 2002; Vol. 40.

[20] Miziorko, H. M. (2011). Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch. Biochem. Biophys., 505 (2), 131.

[21] Frantz Jr, I.; Schroepfer Jr, G. (1967). Sterol biosynthesis. Annu. Rev. Biochem., 36 (1), 691.

[22] Hosokawa, G.; Patterson, G. W.; Lusby, W. R. (1984). Effects of triarimol, tridermorph and triparanol on sterol biosynthesis in carrot, tobacco and soybean suspension cultures. Lipids, 19 (6), 449.

[23] Singh, P.; Saxena, R.; Srinivas, G.; Pande, G.; Chattopadhyay, A. (2013). Cholesterol biosynthesis and homeostasis in regulation of the cell cycle. PLoS One, 8 (3), e58833.

[24]           BEYER, R. S.; JENSEN, L. S. (1993). The hypocholesterolemic agent dichloroacetate increases egg cholesterol content of laying hens. Poult. Sci., 72 (6), 1063.

[25] Boots, M. R.; Boots, S. G.; Noble, C. M.; Guyer, K. E. (1973). Hypocholesterolemic Agents II: Inhibition of β-Hydroxy-β-methylglutaryl Coenzyme A Reductase by Arylalkyl Hydrogen Succinates and Glutarates. J. Pharm. Sci., 62 (6), 952.

[26] Brown, A. G.; Smale, T. C.; King, T. J.; Hasenkamp, R.; Thompson, R. H. (1976). Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J. Chem. Soc., Perkin Trans. 1, (11), 1165.

[27] Endo, A.; Tsujita, Y.; Kuroda, M.; TANZAWA, K. (1977). Inhibition of Cholesterol Synthesis in vitro and in vivo by ML‐236A and ML‐236B, Competitive Inhibitors of 3‐Hydroxy‐3‐methylglutaryl‐Coenzyme A Reductase. EJBio, 77 (1), 31.

[28] Alberts, A.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E. (1980). Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proceedings of the National Academy of Sciences, 77 (7), 3957.

[29] Endo, A. (1979). Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. The Journal of antibiotics, 32 (8), 852.

[30] Hoffman, W.; Alberts, A.; Anderson, P.; Chen, J.; Smith, R.; Willard, A. (1986). 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. 4. Side-chain ester derivatives of mevinolin. J. Med. Chem., 29 (5), 849.

[31] Paal, C. (1885). Synthese von Thiophen‐und Pyrrolderivaten. Berichte der deutschen chemischen Gesellschaft, 18 (1), 367.

[32] Narasaka, K.; Pai, H. C. (1980). Stereoselective synthesis of meso (or erythro) 1, 3-diols from β-hydroxyketones. Chem. Lett., 9 (11), 1415.

[33] Rádl, S.; Stach, J.; Hajicek, J. (2002). An improved synthesis of 1, 1-dimethylethyl 6-cyanomethyl-2, 2-dimethyl-1, 3-dioxane-4-acetate, a key intermediate for atorvastatin synthesis. Tetrahedron Lett., 43 (11), 2087.

[34] Bodurow, C.; Boyer, B.; Brennan, J.; Bunnell, C.; Burks, J.; Carr, M.; Doecke, C.; Eckrich, T.; Fisher, J.; Gardner, J. (1989). An enantioselective synthesis of loracarbef (LY163892/KT3777). Tetrahedron Lett., 30 (18), 2321.

[35] Hu, F. B.; Stampfer, M. J.; Manson, J. E.; Rimm, E.; Colditz, G. A.; Rosner, B. A.; Hennekens, C. H.; Willett, W. C. (1997). Dietary fat intake and the risk of coronary heart disease in women. New Engl. J. Med., 337 (21), 1491.

[36] Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repič, O.; Shapiro, M. J. (1987). 1, 3-syn diastereoselective reduction of β-hydroxyketones utilizing alkoxydialkylboranes. Tetrahedron Lett., 28 (2), 155.

[37] Kumar, P.; Deshmukh, A. N.; Upadhyay, R. K.; Gurjar, M. K. (2005). A simple and practical approach to enantiomerically pure (S)-3-hydroxy-γ-butyrolactone: synthesis of (R)-4-cyano-3-hydroxybutyric acid ethyl ester. Tetrahedron: Asymmetry, 16 (16), 2717.

[38] Pfruender, H.; Amidjojo, M.; Hang, F.; Weuster-Botz, D. (2005). Production of Lactobacillus kefir cells for asymmetric synthesis of a 3, 5-dihydroxycarboxylate. Appl. Microbiol. Biotechnol., 67 (5), 619.

[39] Patel, R. N.; Banerjee, A.; McNamee, C. G.; Brzozowski, D.; Hanson, R. L.; Szarka, L. J. (1993). Enantioselective microbial reduction of 3, 5-dioxo-6-(benzyloxy) hexanoic acid, ethyl ester. Enzyme Microb. Technol., 15 (12), 1014.

[40] Wolberg, M.; Hummel, W.; Wandrey, C.; Müller, M. (2000). Highly regio‐and enantioselective reduction of 3, 5‐dioxocarboxylates. Angew. Chem. Int. Ed., 39 (23), 4306.

[41] Gijsen, H. J.; Wong, C.-H. (1994). Unprecedented asymmetric aldol reactions with three aldehyde substrates catalyzed by 2-deoxyribose-5-phosphate aldolase. J. Am. Chem. Soc., 116 (18), 8422.

[42] Liu, J.; Hsu, C.-C.; Wong, C.-H. (2004). Sequential aldol condensation catalyzed by DERA mutant Ser238Asp and a formal total synthesis of atorvastatin. Tetrahedron Lett., 45 (11), 2439.

[43] Greenberg, W. A.; Varvak, A.; Hanson, S. R.; Wong, K.; Huang, H.; Chen, P.; Burk, M. J. (2004). Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. Proceedings of the National Academy of Sciences, 101 (16), 5788.

[44] DeSantis, G.; Zhu, Z.; Greenberg, W. A.; Wong, K.; Chaplin, J.; Hanson, S. R.; Farwell, B.; Nicholson, L. W.; Rand, C. L.; Weiner, D. P. (2002). An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J. Am. Chem. Soc., 124 (31), 9024.

[45] DeSantis, G.; Wong, K.; Farwell, B.; Chatman, K.; Zhu, Z.; Tomlinson, G.; Huang, H.; Tan, X.; Bibbs, L.; Chen, P. (2003). Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J. Am. Chem. Soc., 125 (38), 11476.

[46] Short, J. M.; Google Patents, 2001.

[47] Bergeron, S.; Chaplin, D. A.; Edwards, J. H.; Ellis, B. S.; Hill, C. L.; Holt-Tiffin, K.; Knight, J. R.; Mahoney, T.; Osborne, A. P.; Ruecroft, G. (2006). Nitrilase-catalysed desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate. Organic process research & development, 10 (3), 661.

[48] Sun, F.; Xu, G.; Wu, J.; Yang, L. (2006). Efficient lipase-catalyzed kinetic resolution of 4-arylmethoxy-3-hydroxybutanenitriles: application to an expedient synthesis of a statin intermediate. Tetrahedron: Asymmetry, 17 (20), 2907.

[49] Wang, G.; Hollingsworth, R. I. (1999). Synthetic routes to L-carnitine and L-gamma-amino-beta-hydroxybutyric acid from (S)-3-hydroxybutyrolactone by functional group priority switching. Tetrahedron: Asymmetry, 10 (10), 1895.

[50] Lee, S.-H.; Park, O.-J.; Uh, H.-S. (2008). A chemoenzymatic approach to the synthesis of enantiomerically pure (S)-3-hydroxy-γ-butyrolactone. Appl. Microbiol. Biotechnol., 79 (3), 355.

[51] Goldberg, S.; Guo, Z.; Chen, S.; Goswami, A.; Patel, R. N. (2008). Synthesis of ethyl-(3R, 5S)-dihydroxy-6-benzyloxyhexanoates via diastereo-and enantioselective microbial reduction: Cloning and expression of ketoreductase III from Acinetobacter sp. SC 13874. Enzyme Microb. Technol., 43 (7), 544.

[52] Majerić Elenkov, M.; Tang, L.; Hauer, B.; Janssen, D. B. (2006). Sequential kinetic resolution catalyzed by halohydrin dehalogenase. Org. Lett., 8 (19), 4227.

[53] Patel, J. M. (2009). Biocatalytic synthesis of atorvastatin intermediates. J. Mol. Catal. B: Enzym., 61 (3-4), 123.

[54] Hu, L.; Xiong, F.; Chen, X.; Chen, W.; He, Q.; Chen, F. (2013). Synthetic studies on statins. Part 1: a short and cyanide-free synthesis of atorvastatin calcium via an enantioselective aldol strategy. Tetrahedron: Asymmetry, 24 (4), 207.

[55] Su, Z.; Wen, J.; Dente, L.; Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. (2011). The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. HESS, 15 (7), 2303.

[56] Brower, P. L.; Butler, D. E.; Deering, C. F.; Le, T. V.; Millar, A.; Nanninga, T. N.; Roth, B. D. (1992). The synthesis of (4R-cis)-1, 1-dimethylethyl 6-cyanomethyl-2, 2-dimethyl-1, 3-dioxane-4-acetate, a key intermediate for the preparation of CI-981, a highly potent, tissue selective inhibitor of HMG-CoA reductase. Tetrahedron Lett., 33 (17), 2279.

[57] Trost, B. M.; Brindle, C. S. (2010). The direct catalytic asymmetric aldol reaction. ChSRv, 39 (5), 1600.

[58] Liuzzo, G.; Biasucci, L. M.; Gallimore, J. R.; Grillo, R. L.; Rebuzzi, A. G.; Pepys, M. B.; Maseri, A. (1994). The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. New Engl. J. Med., 331 (7), 417.

[59] Narasaka, K.; Pai, F.-C. (1984). Stereoselective reduction of β hydroxyketones to 1, 3-diols highly selective 1, 3-asymmetric induction via boron chelates. Tetrahedron, 40 (12), 2233.

[60] Black, D. M.; Bakker-Arkema, R. G.; Nawrocki, J. W. (1998). An overview of the clinical safety profile of atorvastatin (Lipitor), a new HMG-CoA reductase inhibitor. Arch. Intern. Med., 158 (6), 577.

[61] Maron, D. J.; Fazio, S.; Linton, M. F. (2000). Current perspectives on statins. Circulation, 101 (2), 207.

[62] Rosenson, R. S. (2004). Statins: can the new generation make an impression? Expert opinion on emerging drugs, 9 (2), 269.

[63] Ballantyne, C. M. (1998). Low-density lipoproteins and risk for coronary artery disease. The American journal of cardiology, 82 (8), 3.

[64] Olsson, A. G.; Pauciullo, P.; Soska, V.; Luley, C.; Pieters, R. E.; Broda, G.; Palacios, B.; Group, F. S. (2001). Comparison of the efficacy and tolerability of fluvastatin extended-release and immediate-release formulations in the treatment of primary hypercholesterolemia: a randomized trial. Clin. Ther., 23 (1), 45.

[65] Toth, P. P.; Worthy, G.; Gandra, S. R.; Sattar, N.; Bray, S.; Cheng, L. I.; Bridges, I.; Worth, G. M.; Dent, R.; Forbes, C. A. (2017). Systematic review and network meta‐analysis on the efficacy of evolocumab and other therapies for the management of lipid levels in hyperlipidemia. Journal of the American Heart Association, 6 (10), e005367.