Document Type: Short Review Article


Department of Chemistry, Yashawantrao Chavan Warana Mahavidyalaya, Warananager, Shivaji University, Kolhapur, Maharashtra, India-416113



Energy problem is one of the serious concerns in modern society; therefore, we have to take hastily an effective action. Hence, researchers are looking for some attractive materials with low-cost, lightweight, and environmentally effective. Recently, 2D materials have taken notable recognition in the field of materials science for multiple energy application, because of its unique electronic and optical properties; and borophene is one of the 2D material which is commendatories than graphene. However, it has not much experimentally explored yet. This review discusses the synthesis process of borophene and discussed energy-related application such as energy storage, optoelectronic, photocatalytic activity, and hydrogen storage. Moreover, this work provides a summary of each application that could help to understand the importance of borophene materials for energy applications.

Graphical Abstract


[1] Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., & Zamora, F. (2011). 2D materials: to graphene and beyond. Nanoscale, 3(1), 20-30.

[2] Kannan, P. K., Late, D. J., Morgan, H., & Rout, C. S. (2015). Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale7(32), 13293-13312..

[3] Guo, Y., Xu, K., Wu, C., Zhao, J., & Xie, Y. (2015). Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chemical Society Reviews44(3), 637-646.

[4] Gobbi, M., Orgiu, E., & Samorì, P. (2018). When 2D materials meet molecules: opportunities and challenges of hybrid organic/inorganic van der Waals heterostructures. Advanced Materials30(18), 1706103.

[5] Shein, I. R., & Ivanovskii, A. L. (2013). Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation. Micro & Nano Letters8(2), 59-62.

[6] Lightcap, I. V., & Kamat, P. V. (2012). Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Accounts of chemical Research46(10), 2235-2243.

[7] Chandrasekaran, J., Nithyaprakash, D., Ajjan, K. B., Maruthamuthu, S., Manoharan, D., & Kumar, S. (2011). Hybrid solar cell based on blending of organic and inorganic materials—An overview. Renewable and Sustainable Energy Reviews15(2), 1228-1238.

[8] Li, B., Gu, P., Feng, Y., Zhang, G., Huang, K., Xue, H., & Pang, H. (2017). Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solid‐State Electrolyte. Advanced Functional Materials27(12), 1605784.

[9] Mao, M., Hu, J., & Liu, H. (2015). Graphene‐based materials for flexible electrochemical energy storage. International Journal of Energy Research39(6), 727-740.

[10]  Sreeprasad, T. S., & Berry, V. (2013). How do the electrical properties of graphene change with its functionalization?. Small9(3), 341-350.

[11] Suk, J. W., Lee, W. H., Lee, J., Chou, H., Piner, R. D., Hao, Y., ... & Ruoff, R. S. (2013). Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano letters13(4), 1462-1467.

[12] Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., & McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena25(6), 2558-2561.

[13] Faccio, R., Denis, P. A., Pardo, H., Goyenola, C., & Mombrú, A. W. (2009). Mechanical properties of graphene nanoribbons. Journal of Physics: Condensed Matter21(28), 285304.

[14] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano letters8(3), 902-907.

[15] De Padova, P., Kubo, O., Olivieri, B., Quaresima, C., Nakayama, T., Aono, M., & Le Lay, G. (2012). Multilayer silicene nanoribbons. Nano letters12(11), 5500-5503.

[16] Yamada-Takamura, Y., & Friedlein, R. (2014). Progress in the materials science of silicene. Science and technology of advanced materials15(6), 064404.

[17] Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., ... & Lu, J. (2011). Tunable bandgap in silicene and germanene. Nano letters12(1), 113-118.

[18] Mortazavi, B., Dianat, A., Cuniberti, G., & Rabczuk, T. (2016). Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation. Electrochimica Acta213, 865-870.

[19] Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A., & Le Lay, G. (2014). Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New Journal of Physics16(9), 095002.

[20] Carvalho, A., Wang, M., Zhu, X., Rodin, A. S., Su, H., & Neto, A. H. C. (2016). Phosphorene: from theory to applications. Nature Reviews Materials1(11), 16061.

[21] Woomer, A. H., Farnsworth, T. W., Hu, J., Wells, R. A., Donley, C. L., & Warren, S. C. (2015). Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS nano9(9), 8869-8884.

[22] Wang, Y. P., Ji, W. X., Zhang, C. W., Li, P., Li, F., Ren, M. J., ... & Wang, P. J. (2016). Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene. Scientific reports, 6, 20342.

[23] Kecik, D., Durgun, E., & Ciraci, S. (2016). Optical properties of single-layer and bilayer arsenene phases. Physical Review B, 94(20), 205410.

[24] Sharma, S., Kumar, S., & Schwingenschlögl, U. (2017). Arsenene and antimonene: two-dimensional materials with high thermoelectric figures of merit. Physical Review Applied, 8(4), 044013.

[25] Wilson, J. A., & Yoffe, A. D. (1969). The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 18(73), 193-335.

[26] Wilson, J. A., Di Salvo, F. J., & Mahajan, S. (1975). Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Advances in Physics, 24(2), 117-201.

[27] Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., & Kis, A. (2017). 2D transition metal dichalcogenides. Nature Reviews Materials, 2(8), 17033.

[28] Boustani, I. (1997). New quasi-planar surfaces of bare boron. Surface science, 370(2-3), 355-363.

[29] Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, U. M. (1992). Electronic structure of chiral graphene tubules. Applied physics letters, 60(18), 2204-2206.

[30] Mannix, A. J., Zhou, X. F., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D.,  & Yacaman, M. J. (2015). Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 350(6267), 1513-1516.

[31] Seifert, G., Heine, T., & Fowler, P. W. (2001). Inorganic nanotubes and fullerenes. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 16(1), 341-343.

[32] Piazza, Z. A., Hu, H. S., Li, W. L., Zhao, Y. F., Li, J., & Wang, L. S. (2014). Planar hexagonal B 36 as a potential basis for extended single-atom layer boron sheets. Nature communications, 5, 3113.

[33] Zhong, Q., Kong, L., Gou, J., Li, W., Sheng, S., Yang, S., ... & Chen, L. (2017). Synthesis of borophene nanoribbons on Ag (110) surface. Physical Review Materials, 1(2), 021001.

[34] Jun, Y. S., Kim, D., & Neil, C. W. (2016). Heterogeneous nucleation and growth of nanoparticles at environmental interfaces. Accounts of chemical research, 49(9), 1681-1690.

[35] Resta, V., Afonso, C. N., Piscopiello, E., & Van Tendeloo, G. (2009). Role of substrate on nucleation and morphology of gold nanoparticles produced by pulsed laser deposition. Physical Review B, 79(23), 235409.

[36] Mavel, G., Escard, J., Costa, P., & Castaing, J. (1973). ESCA surface study of metal borides. Surface Science, 35, 109-116.

[37] Liu, Y., Penev, E. S., & Yakobson, B. I. (2013). Probing the synthesis of two‐dimensional boron by first‐principles computations. Angewandte Chemie International Edition, 52(11), 3156-3159.

[38] Li, W., Kong, L., Chen, C., Gou, J., Sheng, S., Zhang, W., ... & Wu, K. (2018). Experimental realization of honeycomb borophene. Science bulletin, 63(5), 282-286.

[39] Zhang, Z., Mannix, A. J., Hu, Z., Kiraly, B., Guisinger, N. P., Hersam, M. C., & Yakobson, B. I. (2016). Substrate-induced nanoscale undulations of borophene on silver. Nano letters, 16(10), 6622-6627.

[40] Sutti, M. (2015). Elastic Theory of Plates.

[41] Zhang, X., Huisman, E. H., Gurram, M., Browne, W. R., van Wees, B. J., & Feringa, B. L. (2014). Supramolecular Chemistry on Graphene Field‐Effect Transistors. Small, 10(9), 1735-1740.

[42] Wang, H., Feng, H., & Li, J. (2014). Graphene and graphene‐like layered transition metal dichalcogenides in energy conversion and storage. Small, 10(11), 2165-2181.

[43] Li, H., Shi, Y., Chiu, M. H., & Li, L. J. (2015). Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy, 18, 293-305.

[44] Pumera, M. (2011). Graphene-based nanomaterials for energy storage. Energy & Environmental Science, 4(3), 668-674.

[45] Brownson, D. A., Kampouris, D. K., & Banks, C. E. (2011). An overview of graphene in energy production and storage applications. Journal of Power Sources, 196(11), 4873-4885.

[46] Wang, T., Chen, S., Pang, H., Xue, H., & Yu, Y. (2017). MoS2‐based nanocomposites for electrochemical energy storage. Advanced Science, 4(2), 1600289.

[47] Wang, J., Liu, J., Chao, D., Yan, J., Lin, J., & Shen, Z. X. (2014). Self‐Assembly of Honeycomb‐like MoS2 Nanoarchitectures Anchored into Graphene Foam for Enhanced Lithium‐Ion Storage. Advanced Materials, 26(42), 7162-7169.

[48] Lei, T., Chen, W., Huang, J., Yan, C., Sun, H., Wang, C., ... & Xiong, J. (2017). Multi‐Functional Layered WS2 Nanosheets for Enhancing the Performance of Lithium–Sulfur Batteries. Advanced Energy Materials, 7(4), 1601843.

[49] He, P., Yan, M., Zhang, G., Sun, R., Chen, L., An, Q., & Mai, L. (2017). Layered VS2 Nanosheet‐Based Aqueous Zn Ion Battery Cathode. Advanced Energy Materials, 7(11), 1601920.

[50] Shi, M., Zhao, L., Song, X., Liu, J., Zhang, P., & Gao, L. (2016). Highly conductive Mo2C nanofibers encapsulated in ultrathin MnO2 nanosheets as a self-supported electrode for high-performance capacitive energy storage. ACS applied materials & interfaces, 8(47), 32460-32467.

[51] Zhu, J., Sakaushi, K., Clavel, G., Shalom, M., Antonietti, M., & Fellinger, T. P. (2015). A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. Journal of the American Chemical Society, 137(16), 5480-5485.

[52] Li, B., Zhang, D., Liu, Y., Yu, Y., Li, S., & Yang, S. (2017). Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano energy, 39, 654-661.

[53] Zhang, Y., Wu, Z. F., Gao, P. F., Zhang, S. L., & Wen, Y. H. (2016). Could borophene be used as a promising anode material for high-performance lithium ion battery?. ACS applied materials & interfaces, 8(34), 22175-22181.

[54] Uthaisar, C., & Barone, V. (2010). Edge effects on the characteristics of Li diffusion in graphene. Nano letters, 10(8), 2838-2842.

[55] Li, Y., Wu, D., Zhou, Z., Cabrera, C. R., & Chen, Z. (2012). Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study. The journal of physical chemistry letters, 3(16), 2221-2227.

[56] Zhang, X., Hu, J., Cheng, Y., Yang, H. Y., Yao, Y., & Yang, S. A. (2016). Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale, 8(33), 15340-15347.

[57] Bruce, P. G., Freunberger, S. A., Hardwick, L. J., & Tarascon, J. M. (2012). Li–O 2 and Li–S batteries with high energy storage. Nature materials, 11(1), 19.

[58] Ji, X., & Nazar, L. F. (2010). Advances in Li–S batteries. Journal of Materials Chemistry, 20(44), 9821-9826.

[59] Li, Y. J., Fan, J. M., Zheng, M. S., & Dong, Q. F. (2016). A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy & Environmental Science, 9(6), 1998-2004.

[60] Zheng, S., Yi, F., Li, Z., Zhu, Y., Xu, Y., Luo, C., & Wang, C. (2014). Copper‐stabilized sulfur‐microporous carbon cathodes for Li–S batteries. Advanced Functional Materials, 24(26), 4156-4163.

[61] Powar, N. S., Patel, V. J., Pagare, P. K., & Pandav, R. S. (2019). Cu Nanoparticle: Synthesis, Characterization and Application. Chemical Methodologies, 3(4), 457-480.

[62] Jiang, H. R., Shyy, W., Liu, M., Ren, Y. X., & Zhao, T. S. (2018). Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study. Journal of Materials Chemistry A, 6(5), 2107-2114.

[63] Chen, H., Zhang, W., Tang, X. Q., Ding, Y. H., Yin, J. R., Jiang, Y., & Jin, H. (2018). First principles study of P-doped borophene as anode materials for lithium ion batteries. Applied Surface Science, 427, 198-205.

[64] Jiang, H. R., Lu, Z., Wu, M. C., Ciucci, F., & Zhao, T. S. (2016). Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy, 23, 97-104.

[65] Rao, D., Zhang, L., Meng, Z., Zhang, X., Wang, Y., Qiao, G., & Lu, R. (2017). Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. Journal of Materials Chemistry A, 5(5), 2328-2338.

[66] Liu, J., Zhang, C., Xu, L., & Ju, S. (2018). Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT. RSC advances, 8(32), 17773-17785.

[67] Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2013). Planar photonics with metasurfaces. Science, 339(6125), 1232009.

[68] Lu, H. H., Chen, G. L., Chuang, Y. W., Tsai, C. C., & Chuang, C. P. (2006). Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques. Optics Communications, 266(2), 495-499.

[69] Opeyemi, O., Louis, H., Oparab, C., Funmilayo, O., Magu, T. (2019). Porphyrin and Phthalocyanines-Based Solar Cells: Fundamental Mechanisms and Recent Advances. Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry, 2(Issue 1, pp. 1-93.), 21-44.

[70] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 7(11), 699.

[71] Huo, N., Yang, Y., & Li, J. (2017). Optoelectronics based on 2D TMDs and heterostructures. Journal of Semiconductors, 38(3), 031002.

[72] Yazyev, O. V., & Louie, S. G. (2010). Electronic transport in polycrystalline graphene. Nature materials, 9(10), 806.

[73] Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature nanotechnology, 3(5), 270.

[74] Ponraj, J. S., Xu, Z. Q., Dhanabalan, S. C., Mu, H., Wang, Y., Yuan, J. & Zhang, Y. (2016). Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 27(46), 462001.

[75] Kim, H. C., Kim, H., Lee, J. U., Lee, H. B., Choi, D. H., Lee, J. H., & Lee, S. W. (2015). Engineering optical and electronic properties of WS2 by varying the number of layers. ACS nano, 9(7), 6854-6860.

[76] Ko, P. J., Abderrahmane, A., Kim, N. H., & Sandhu, A. (2017). High-performance near-infrared photodetector based on nano-layered MoSe2. Semiconductor Science and Technology, 32(6), 065015.

[77] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., & Wang, F. (2010). Emerging photoluminescence in monolayer MoS2. Nano letters, 10(4), 1271-1275.

[78] Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2), 16098.

[79] Adamska, L., & Sharifzadeh, S. (2017). Fine-tuning the optoelectronic properties of freestanding borophene by strain. ACS Omega, 2(11), 8290-8299.

[80] Adamska, L., Sadasivam, S., Foley IV, J. J., Darancet, P., & Sharifzadeh, S. (2018). First-principles investigation of borophene as a monolayer transparent conductor. The Journal of Physical Chemistry C, 122(7), 4037-4045.

[81] Jiang, J. W., Wang, X. C., Song, Y., & Mi, W. B. (2018). Tunable Schottky barrier and electronic properties in borophene/g-C2N van der Waals heterostructures. Applied Surface Science, 440, 42-46.

[82] Liu, L. Z., Xiong, S. J., & Wu, X. L. (2016). Monolayer borophene electrode for effective elimination of both the Schottky barrier and strong electric field effect. Applied Physics Letters, 109(6), 061601.

[83] Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. nature, 238(5358), 37.

[84] Salavati, H., Teimouri, A., Kazemi, S. (2017). Synthesis and Characterization of Novel Composite-Based Phthalocyanine Used as Efficient Photocatalyst for the Degradation of Methyl Orange. Chemical Methodologies, 1(Issue 1. pp. 1-86), 12-27.

[85] Salavati, H., Teimouri, A., Kazemi, S. (2017). Investigation of Photocatalytic Performance of Keggin Type Heteropolyacid in Degradation of Methylene Blue. Chemical Methodologies, 1(Issue 2. pp. 87-193), 145-158.

[86] Madadi, Z., Soltanieh, M., Bagheri Lotfabad, T., Nazari, S. (2019). Green synthesis of titanium dioxide nanoparticles with Glycyrrhiza glabra and their photocatalytic activity. Asian Journal of Green Chemistry,

[87] Jefri, S., Abdullah, A., Muhamad, E. (2019). Response surface methodology: photodegradation of methyl orange by CuO/ZnO under UV light irradiation. Asian Journal of Green Chemistry, 3(Issue 2. pp. 125-287), 271-287.

[88] Zhang, X., Zhang, Z., Wu, D., Zhang, X., Zhao, X., & Zhou, Z. (2018). Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts. Small Methods, 2(5), 1700359.

[89] Niu, P., Zhang, L., Liu, G., & Cheng, H. M. (2012). Graphene‐like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 22(22), 4763-4770.

[90] Xiang, Q., Yu, J., & Jaroniec, M. (2011). Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 3(9), 3670-3678.

[91] Do, Y. R., Lee, W., Dwight, K., & Wold, A. (1994). The effect of WO3 on the photocatalytic activity of TiO2. Journal of Solid State Chemistry, 108(1), 198-201.

[92] Gupta, U., Rao, B. G., Maitra, U., Prasad, B. E., & Rao, C. N. R. (2014). Visible‐Light‐Induced Generation of H2 by Nanocomposites of Few‐Layer TiS2 and TaS2 with CdS Nanoparticles. Chemistry–An Asian Journal, 9(5), 1311-1315.

[93] Zhuang, H. L., & Hennig, R. G. (2013). Theoretical perspective of photocatalytic properties of single-layer SnS2. Physical Review B, 88(11), 115314.

[94] Yu, J., Xu, C. Y., Ma, F. X., Hu, S. P., Zhang, Y. W., & Zhen, L. (2014). Monodisperse SnS2 nanosheets for high-performance photocatalytic hydrogen generation. ACS applied materials & interfaces, 6(24), 22370-22377.

[95] Singh, A. K., Mathew, K., Zhuang, H. L., & Hennig, R. G. (2015). Computational screening of 2D materials for photocatalysis. The journal of physical chemistry letters, 6(6), 1087-1098.

[96] Wang, Y., Zhao, S., Wang, Y., Laleyan, D. A., Wu, Y., Ouyang, B.,  & Mi, Z. (2018). Wafer-scale synthesis of monolayer WSe2: a multi-functional photocatalyst for efficient overall pure water splitting. Nano Energy, 51, 54-60.

[97] Ran, J., Gao, G., Li, F. T., Ma, T. Y., Du, A., & Qiao, S. Z. (2017). Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature communications, 8, 13907.

[98] Shi, L., Ling, C., Ouyang, Y., & Wang, J. (2017). High intrinsic catalytic activity of two-dimensional boron monolayers for the hydrogen evolution reaction. Nanoscale, 9(2), 533-537.

[99] Mir, S. H., Chakraborty, S., Jha, P. C., Wärnå, J., Soni, H., Jha, P. K., & Ahuja, R. (2016). Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction. Applied Physics Letters, 109(5), 053903.

[100] Liu, C., Dai, Z., Zhang, J., Jin, Y., Li, D., & Sun, C. (2018). Two-dimensional boron sheets as metal-free catalysts for hydrogen evolution reaction. The Journal of Physical Chemistry C, 122(33), 19051-19055.

[101] Chen, Y., Yu, G., Chen, W., Liu, Y., Li, G. D., Zhu, P.,  & Li, H. (2017). Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. Journal of the American Chemical Society, 139(36), 12370-12373.

[102] Park, H., Encinas, A., Scheifers, J. P., Zhang, Y., & Fokwa, B. P. (2017). Boron‐Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 56(20), 5575-5578.

[103] Sakintuna, B., Lamari-Darkrim, F., & Hirscher, M. (2007). Metal hydride materials for solid hydrogen storage: a review. International journal of hydrogen energy, 32(9), 1121-1140.

[104] Orimo, S. I., Nakamori, Y., Eliseo, J. R., Züttel, A., & Jensen, C. M. (2007). Complex hydrides for hydrogen storage. Chemical Reviews, 107(10), 4111-4132.

[105] Chen, P., Xiong, Z., Luo, J., Lin, J., & Tan, K. L. (2002). Interaction of hydrogen with metal nitrides and imides. Nature, 420(6913), 302.

[106] Vajo, J. J., & Olson, G. L. (2007). Hydrogen storage in destabilized chemical systems. Scripta Materialia, 56(10), 829-834.

[107] Tozzini, V., & Pellegrini, V. (2013). Prospects for hydrogen storage in graphene. Physical Chemistry Chemical Physics, 15(1), 80-89.

[108] Patchkovskii, S., John, S. T., Yurchenko, S. N., Zhechkov, L., Heine, T., & Seifert, G. (2005). Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the National Academy of Sciences, 102(30), 10439-10444.

[109] Pumera, M., Sofer, Z., & Ambrosi, A. (2014). Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A, 2(24), 8981-8987.

[110] Gao, Y. P., Wu, X., Huang, K. J., Xing, L. L., Zhang, Y. Y., & Liu, L. (2017). Two-dimensional transition metal diseleniums for energy storage application: a review of recent developments. CrystEngComm, 19(3), 404-418.

[111] Hu, Q., Wang, H., Wu, Q., Ye, X., Zhou, A., Sun, D.,  & He, J. (2014). Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations. International Journal of Hydrogen Energy, 39(20), 10606-10612.

[112] Martin, M., Gommel, C., Borkhart, C., & Fromm, E. (1996). Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds, 238(1-2), 193-201.

[113] Liu, C. S., Wang, X., Ye, X. J., Yan, X., & Zeng, Z. (2014). Curvature and ionization-induced reversible hydrogen storage in metalized hexagonal B36. The Journal of chemical physics, 141(19), 194306.

[114] Wang, J., Du, Y., & Sun, L. (2016). Ca-decorated novel boron sheet: a potential hydrogen storage medium. International Journal of Hydrogen Energy, 41(10), 5276-5283.

[115] Chen, X., Wang, L., Zhang, W., Zhang, J., & Yuan, Y. (2017). Ca-decorated borophene as potential candidates for hydrogen storage: A first-principle study. International Journal of Hydrogen Energy, 42(31), 20036-20045.

[116] Wang, L., Chen, X., Du, H., Yuan, Y., Qu, H., & Zou, M. (2018). First-principles investigation on hydrogen storage performance of Li, Na and K decorated borophene. Applied Surface Science, 427, 1030-1037.