Scopus     h-index: 24

Document Type : Review Article

Authors

1 Department of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, India

2 Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India

3 Department of Chemistry, KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, Savitribai Phule Pune University, Maharashtra 423 101, India

4 Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India

10.33945/SAMI/jcr.2019.4.2

Abstract

Developing a rapid, reliable and eco-accommodating methodology for the synthesis of metal/metal oxide nanoparticles (NPs) is an important step in the area of nanotechnology. Cobalt oxide nanoparticles (Co3O4 NPs) have been widely studied due to their potential applications including, antibacterial, antifungal, electrochromic sensors, heterogeneous catalysis, and energy storage devices. Due to the large rate of perilous chemicals employed in the physical and chemical production of these NPs, green methods employing the use of plants, fungus, algae, and bacteria have been adopted. However, plant-mediated synthesis of metal NPs has been developed as a substitute to defeat the restrictions of conventional synthesis approaches such as physical and chemical methods. Biomolecules, such as tannins, saponins, proteins, amino acids, steroids, enzymes, flavonoids, and vitamins from several plant extracts have been used as a stabilizing and reducing agents for the synthesis of Co3O4 NPs. Recently, several attempts were made to develop plant-mediated synthesis methods to produce stable, cost-effective, and eco-accommodating Co3O4 NPs. In this review, a comprehensive study was conducted on synthesis, characterization, and various applications of Co3O4 NPs produced using various plant sources.

Graphical Abstract

A Review on Bio-Synthesized Co3O4 Nanoparticles Using Plant Extracts and their Diverse Applications

Keywords

[1] Basnet, P., Chanu, T. I., Samanta, D., & Chatterjee, S. (2018). A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. Journal of Photochemistry and Photobiology B: Biology183, 201-221.
[2] Ghosh Chaudhuri, R., & Paria, S. (2011). Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews, 112(4), 2373-2433.
[3] Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews, 104(1), 293-346.
[4] Ghotekar, S. (2019), A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 3(2), 187-200.
[5] Nikam, A., Pagar, T., Ghotekar, S., Pagar, K., Pansambal, S. (2019). A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. Journal of Chemical Reviews, 1(3), 154-163.
[6] Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research7(1), 17-28.
[7] Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., ... & Varma, R. S. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chemical reviews116(6), 3722-3811.
[8] Aher, Y. B., Jain, G. H., Patil, G. E., Savale, A. R., Ghotekar, S. K., Pore, D. M., Pansambal, S. S.,  & Deshmukh, K. K. (2017). Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against diverse pathogens. International Journal of Molecular and Clinical Microbiology7(1), 776-786.
[9] Frewer, L. J., Gupta, N., George, S., Fischer, A. R. H., Giles, E. L., & Coles, D. (2014). Consumer attitudes towards nanotechnologies applied to food production. Trends in food science & technology40(2), 211-225.
[10] Kamble, D. R., Bangale, S. V., Ghotekar, S. K., Bamane, S. R. (2018). Efficient synthesis of CeVO4 nanoparticles using combustion route and their antibacterial activity. J. Nanostruct. 8(2), 144-151.
[11] Syedmoradi, L., Daneshpour, M., Alvandipour, M., Gomez, F. A., Hajghassem, H., & Omidfar, K. (2017). Point of care testing: The impact of nanotechnology. Biosensors and Bioelectronics87, 373-387.
[12] Ghotekar, S., Pansambal, S., Pagar, K., Pardeshi, O., Oza, R. (2018), Synthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity. Nanochem. Res. 3(2), 189-196.
[13] Savale, A., Ghotekar, S., Pansambal, S., Pardeshi, O. (2017), Green synthesis of fluorescent CdO nanoparticles using Leucaena leucocephala L. extract and their biological activities. J. Bacteriol. Mycol. Open Access. 5(5), 00148.
[14] Ghotekar, S., Savale, A., Pansambal, S. (2018), Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities. J. Water Environ. Nanotechnol. 3(2), 95-105.
[15] Ghotekar, S. K., Vaidya, P. S., Pande, S. N., Pawar, S. P. (2015), Synthesis of silver nanoparticles by using 3-methyl pyrazol 5-one (chemical reduction method) and its characterizations. Int. J. Multidis. Res. and Deve.  2(5), 419-422.
[16] Ghotekar, S. K., Pande, S. N., Pansambal, S. S., Sanap, D. S., Mahale, K. M., Sonawane, B.(2015),Biosynthesis of silver nanoparticles using unripe fruit extract of Annona reticulata L. and its characterization. World J. Pharm. and Pharm. Sci.4(11), 1304-1312.
[17] Pansambal, S., Deshmukh, K., Savale, A., Ghotekar, S., Pardeshi, O., Jain, G., Aher, Y., Pore D. (2017), Phytosynthesis and biological activities of fluorescent CuO nanoparticles using Acanthospermum hispidum L. extract. J. Nanostruct. 7, 165-174.
[18] Bangale, S., Ghotekar, S. (2019), Bio-fabrication of silver nanoparticles using Rosa chinensis L. extract for antibacterial activities. Int. J. Nano Dimens. 10(2), 217-224.
[19] Pansambal, S., Gavande, S., Ghotekar, S., Oza, R., Deshmukh, K. (2017). Green Synthesis of CuO Nanoparticles using Ziziphus Mauritiana L. Extract and Its Characterizations. Int. J. Sci. Res. in Sci. and Tech. 3, 1388-1392.
[20] Pansambal, S., Ghotekar, S., Oza, R., Deshmukh, K. (2019), Biosynthesis of CuO nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves and their catalytic performance for the 5-aryl-1,2,4-triazolidine-3- thione derivatives synthesis. Int. J. Sci. Res. Sci. Tech., 5(4), 122-128.
[21] Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry13(10), 2638-2650.
[22] Opeyemi, O., Louis, H., Oparab, C., Funmilayo, O., Magu, T. (2019). Porphyrin and Phthalocyanines-Based Solar Cells: Fundamental Mechanisms and Recent Advances. Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry, 2(1), 21-44.
[23] Gomaa, E., Abdel Hady, M., Mahmoud, M., El Kot, D. (2019). Cyclic Voltammetry of Aqueous CoCl2 in the Presence of Ceftriaxone Disodium Salt (Cefs) at 298.65 K. Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry, 2(1), 1-13.
[24] John, W., Ayi, A., Anyama, C., Ashishie, P., Inah, B. (2019). On the use of methylimidazolium acetate ionic liquids as solvent and stabilizer in the synthesis of cobalt nanoparticles by chemical reduction method. Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry, 2(2), 175-183.
[25] Alizadeh, R., Ghazinia, N. (2019). Synthesis, Experimental and Theoretical Characterization of Co (III) Complexes of 2-Hydroxynaphthaldehyde. Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry, 2(3), 184-189.
[26] Amar, I., Alshibani, Z., Abdul Qadir, M., Abdalsamed, I., Altohami, F. (2019). Oil Spill Removal from Water by Absorption on Zinc-Doped Cobalt Ferrite Magnetic Nanoparticles. Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry, 2(4), 365-376.
[27] Santhoskumar, A., Chitra, N. (2019). Structural Characteristics Changes after the Degradation of Polyethylene with Cobalt 12-Hydroxy Oleate Acrylic Dextrose. Chemical Methodologies, 3(1), 83-93.
[28] Amar, I., Sharif, A., Ali, M., Alshareef, S., Altohami, F., Abdulqadir, M., Ahwidi, M. (2020). Removal of Methylene Blue from Aqueous Solutions using Nano-Magnetic Adsorbent Based on Zinc-Doped Cobalt Ferrite. Chemical Methodologies, 4(1), 1-18.
[29] Alizadeh, S., Madrakian, T., Bahram, M. (2019). Selective and Sensitive Simultaneous Determination of Mercury and Cadmium based on the Aggregation of PHCA Modified- AuNPs in West Azerbaijan Regional Waters. Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry, 2(1), 57-72.
[30] Ahmad, F. (2020). Carbon Dioxide Electrochemical Reduction over Metal and Metal Free Nanostructures: Recent Progress and Future Perspective. Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry, 3(1), 70-93.
[31] Mohammadi, S., Taheri, A., Rezayati-Zad, Z. (2018). Ultrasensitive and selective non-enzymatic glucose detection based on pt electrode modified by carbon nanotubes@ graphene oxide/ nickel hydroxide-Nafion hybrid composite in alkaline media. Progress in Chemical and Biochemical Research, 1(1), 1-10.
[32] Vinodhkumar, G., Ramya, R., vimalan, M., Potheher, I., Cyrac Peter, A. (2018). Reduced graphene oxide based on simultaneous detection of neurotransmitters. Progress in Chemical and Biochemical Research, 1(1), 40-49.
[33] Diallo, A., Beye, A. C., Doyle, T. B., Park, E., & Maaza, M. (2015). Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: physical properties. Green Chemistry Letters and Reviews8(3-4), 30-36.
[34] Varghese, B., Teo, C. H., Zhu, Y., Reddy, M. V., Chowdari, B. V., Wee, A. T. S., ... & Sow, C. H. (2007). Co3O4 Nanostructures with Different Morphologies and their FieldEmission Properties. Advanced Functional Materials17(12), 1932-1939.
[35] Shinde, V. R., Mahadik, S. B., Gujar, T. P., & Lokhande, C. D. (2006). Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Applied Surface Science252(20), 7487-7492.
[36] Sivachidambaram, M., Vijaya, J. J., Kaviyarasu, K., Kennedy, L. J., Al-Lohedan, H. A., & Ramalingam, R. J. (2017). A novel synthesis protocol for Co3O4 nanocatalysts and their catalytic applications. RSC Advances7(62), 38861-38870.
[37] Li, W. Y., Xu, L. N., & Chen, J. (2005). Co3O4 nanomaterials in lithiumion batteries and gas sensors. Advanced Functional Materials15(5), 851-857.
[38] Han, L., Yang, D. P., & Liu, A. (2015). Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis. Biosensors and Bioelectronics63, 145-152.
[39] Sharma, J. K., Srivastava, P., Singh, G., Akhtar, M. S., & Ameen, S. (2015). Green synthesis of Co3O4 nanoparticles and their applications in thermal decomposition of ammonium perchlorate and dye-sensitized solar cells. Materials Science and Engineering: B193, 181-188.
[40] Dewi, N. O. M., Yulizar, Y., & Apriandanu, D. O. B. (2019, April). Green synthesis of Co3O4 nanoparticles using Euphorbia heterophylla L. leaves extract: characterization and photocatalytic activity. In IOP Conference Series: Materials Science and Engineering (Vol. 509, No. 1, p. 012105). IOP Publishing.
[41] Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., & Maaza, M. (2017). Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arabian Journal of Chemistry.
[42] Anuradha, C. T., & Raji, P. (2019). Effect of annealing temperature on antibacterial, antifungal and structural properties of bio-synthesized Co3O4 nanoparticles using Hibiscus Rosa-sinensis. Materials Research Express6(9), 095063.
[43] Lester, E. D., Aksomaityte, G., Li, J., Gomez, S., Gonzalez-Gonzalez, J., & Poliakoff, M. (2012). Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles. Progress in Crystal Growth and Characterization of Materials58(1), 3-13.
[44] Khalaji, A. D., Nikookar, M., Fejfarova, K., & Dusek, M. (2014). Synthesis of new cobalt (III) Schiff base complex: A new precursor for preparation Co3O4 nanoparticles via solid-state thermal decomposition. Journal of Molecular Structure1071, 6-10.
[45] Deng, J., Kang, L., Bai, G., Li, Y., Li, P., Liu, X., ... & Liang, W. (2014). Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochimica Acta132, 127-135.
[46] Shaalan, N. M., Rashad, M., Moharram, A. H., & Abdel-Rahim, M. A. (2016). Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles. Materials Science in Semiconductor Processing46, 1-5.
[47] Ahmed, J., Ahmad, T., Ramanujachary, K. V., Lofland, S. E., & Ganguli, A. K. (2008). Development of a microemulsion-based process for synthesis of cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from submicrometer rods of cobalt oxalate. Journal of colloid and interface science321(2), 434-441.
[48] Kim, D. Y., Ju, S. H., Koo, H. Y., Hong, S. K., & Kang, Y. C. (2006). Synthesis of nanosized Co3O4 particles by spray pyrolysis. Journal of alloys and compounds417(1-2), 254-258.
[49] Barreca, D., Massignan, C., Daolio, S., Fabrizio, M., Piccirillo, C., Armelao, L., & Tondello, E. (2001). Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition. Chemistry of Materials13(2), 588-593.
[50] Askarinejad, A., Bagherzadeh, M., & Morsali, A. (2010). Catalytic performance of Mn3O4 and Co3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Applied Surface Science256(22), 6678-6682.
[51] Pal, J., & Chauhan, P. (2010). Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Materials characterization61(5), 575-579.
[52] Yang, H., Hu, Y., Zhang, X., & Qiu, G. (2004). Mechanochemical synthesis of cobalt oxide nanoparticles. Materials Letters58(3-4), 387-389.
[53] Zou, D., Xu, C., Luo, H., Wang, L., & Ying, T. (2008). Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature. Materials letters62(12-13), 1976-1978.
[54] Ozkaya, T., Baykal, A., Toprak, M. S., Koseoğlu, Y., & Durmuş, Z. (2009). Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization. Journal of Magnetism and Magnetic Materials321(14), 2145-2149.
[55] Izu, N., Matsubara, I., Uchida, T., Itoh, T., & Shin, W. (2017). Synthesis of spherical cobalt oxide nanoparticles by a polyol method. Journal of the Ceramic Society of Japan125(9), 701-704.
[56] Blakemore, J. D., Gray, H. B., Winkler, J. R., & Müller, A. M. (2013). Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catalysis3(11), 2497-2500.
[57] Vikas, P., Pradeep, J., Manik, C., & Shashwati, S. (2011). Synthesis and characterization of Co3O4 thin film. Soft Nanoscience Letters2012.
[58] Wang, M., Jiang, X., Liu, J., Guo, H., & Liu, C. (2015). Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method. Electrochimica Acta182, 613-620.
[59] He, T., Chen, D., Jiao, X., Xu, Y., & Gu, Y. (2004). Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langmuir20(19), 8404-8408.
[60] Athawale, A. A., Majumdar, M., Singh, H., & Navinkiran, K. (2010). Synthesis of cobalt oxide nanoparticles/fibres in alcoholic medium using y-ray technique. Defence Science Journal60(5), 507-513.
[61] Priyadharshini, T., Saravanakumar, B., Ravi, G., Sakunthala, A., & Yuvakkumar, R. (2018). Hexamine Role on Pseudocapacitive Behaviour of Cobalt Oxide (Co3O4) Nanopowders. Journal of nanoscience and nanotechnology18(6), 4093-4099.
[62] Mahmoud, K. H. (2016). Synthesis and spectroscopic investigation of cobalt oxide nanoparticles. Polymer Composites37(6), 1881-1885.
[63] Athar, T., Hakeem, A., Topnani, N., & Hashmi, A. (2012). Wet synthesis of monodisperse cobalt oxide nanoparticles. ISRN materials science2012.
[64] Dubey, S., Kumar, J., Kumar, A., & Sharma, Y. C. (2018). Facile and green synthesis of highly dispersed cobalt oxide (Co3O4) nano powder: Characterization and screening of its eco-toxicity. Advanced Powder Technology29(11), 2583-2590.
[65] Saeed, M., Akram, N., Naqvi, S. A. R., Usman, M., Abbas, M. A., Adeel, M., & Nisar, A. (2019). Green and eco-friendly synthesis of Co3O4 and Ag- Co3O4: Characterization and photo-catalytic activity. Green Processing and Synthesis8(1), 382-390.
[66] Ikhuoria, E. U., Omorogbe, S. O., Sone, B. T., & Maaza, M. (2018). Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: A facile green synthesis using Manihot esculenta Crantz extract. Science and Technology of Materials30(2), 92-98.
[67] Matinise, N., Mayedwa, N., Fuku, X. G., Mongwaketsi, N., & Maaza, M. (2018, May). Green synthesis of cobalt (II, III) oxide nanoparticles using Moringa Oleifera natural extract as high electrochemical electrode for supercapacitors. In AIP Conference Proceedings (Vol. 1962, No. 1, p. 040005). AIP Publishing.
[68] Saravanakumar, P., Muthukumar, M., Muthuchudarkodi, R. R., & Ramkumar, P. (2018). Piper Nigrum Mediated Green Synthesis, Charecterization of Undoped Cobalt Oxide and Cerium Ion Doped Cobalt Oxide Nanoparticles.
[69] Ullah, M., Naz, A., Mahmood, T., Siddiq, M., & Bano, A. (2014). Biochemical synthesis of nickel & cobalt oxide nano-particles by using biomass waste. International Journal of Enhanced Research in Science Technology & Engineering3, 415-422.
[70] Bibi, I., Nazar, N., Iqbal, M., Kamal, S., Nawaz, H., Nouren, S., ... & Rehman, F. (2017). Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Advanced Powder Technology28(9), 2035-2043.
[71] Das, R. K., & Golder, A. K. (2017). Co3O4 spinel nanoparticles decorated graphite electrode: Bio-mediated synthesis and electrochemical H2O2 sensing. Electrochimica Acta251, 415-426.
[72] Rasheed, T., Nabeel, F., Bilal, M., & Iqbal, H. M. (2019). Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatalysis and Agricultural Biotechnology19, 101154.
[73] Meyers, M. A., Mishra, A., & Benson, D. J. (2006). Mechanical properties of nanocrystalline materials. Progress in materials science51(4), 427-556.