Scopus     h-index: 24

Document Type : Focus Review Article

Authors

1 Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran

2 Faculty Member of Department of Physical Education and Sport science, Zahedan University of Medical Science, Zahedan, Iran

3 Health Promotion Research Center, Zahedan University Of Medical Sciences, Zahedan, Iran

10.33945/SAMI/JCR.2019.2.5

Abstract

Over the last decade, polyoxometalates (POMs) have attracted extensive attention as homogeneous and heterogeneous catalysts used for organic transformation. The most important feature of POMs is the possibility of the catalyst design at atomic/molecular levels. They could also be used as multifunctional catalysts, based on different metal atoms and heteroatoms in their structure, counter cations, and second structures. In this review, application of the Keplerate‐type giant nanoporous isopolyoxomolybdate (NH4)42[MoVI72MoV60O372‐(CH3COO)30(H2O)72], denoted {Mo132} was reviewed in the synthesis of many organic reactions as a heterogeneous solid acid catalyst, which significantly improved the synthesis condition of various organic reactions in the recent years from 2013 to 2019.

Graphical Abstract

(NH4)42[MoVI72MoV60O372(CH3COO)30(H2O)72] as a Heterogeneous Reusable Catalyst for Organic Reactions: Mini-Review

Keywords

Main Subjects

[1] Müller, A., Peters, F., Pope, M. T., &  Gatteschi, D. (1998). Polyoxometalates: very large clusters nanoscale magnets. Chemical Reviews, 98, 239-272.
[2] Xie, Y. (2006). Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstate encapsulated in titania nanotubes. Advanced Functional Materials, 16, 1823-1831.
[3] Ma, Z., Liu, Q., Cui, Z.-M., Bian, S.-W., &  Song, W.-G. (2008). Parallel array of Pt/polyoxometalates composite nanotubes with stepwise inside diameter control and its application in catalysis. The Journal of Physical Chemistry C, 112, 8875-8880.
[4] Müller, A., Krickemeyer, E., Bögge, H., Schmidtmann, M., &  Peters, F. (1998). Organizational forms of matter: an inorganic super fullerene and keplerate based on molybdenum oxide. Angewandte Chemie International Edition, 37, 3359-3363.
[5] Polarz, S., Smarsly, B., Göltner, C., &  Antonietti, M. (2000). The Interplay of Colloidal Organization and OxoCluster Chemistry: PolyoxometalateSilica HybridsMaterials with a Nanochemical Function. Advanced Materials, 12, 1503-1507.
[6] Greedan, J. E. (2001). Geometrically frustrated magnetic materialsBasis of a presentation given at Materials Discussion No. 3, 26–29 September, 2000, University of Cambridge, UK. Journal of Materials Chemistry, 11, 37-53.
[7] Nakhaei, A., Farsinejad, S., &  Ramezani, S. (2017). Use of Nano Magnetic Zirconia Phosphoric Acid as an Efficient and Recyclable Catalyst for the Clean Synthesis of Some Important Quinolone Carboxylic Acid Derivatives. Current Green Chemistry, 4, 130-136.
[8] Nakhaei, A. (2017). Synthesis of thiazole derivatives using magnetic nano zirconia–sulfuric acid as an efficient and recyclable catalyst in water. Russian Journal of General Chemistry, 87, 1850-1856.
[9] Nakhaei, A., &  Yadegarian, S. (2017). Synthesis of tetrahydrobenzo [a] xanthene-11-one derivatives using ZrO2–SO3H as highly efficient recyclable nano-catalyst. Journal of Applied Chemical Research, 11, 72-83.
[10] Nakhaei, A., &  ZohrehNakhaei (2017). Synthesis of carbamatoalkyl naphthols using Fe3O4@ Zro2-SO3H as highly efficient and magnetically recyclable nanocatalyst. Heterocyclic Letters, 7, 565-572.
[11] Nakhaei, A., Hosseininasab, N., &  Yadegarian, S. (2017). Synthesis of 1, 4-dihydropyridine derivatives using nano-zirconia sulfuric acid as highly efficient recyclable catalyst. Heterocyclic Letters, 7, 81-90.
[12] Nakhaei, A., Ramezani, S., Shams-Najafi, S. J., &  Farsinejad, S. (2018). Nano-Fe3O4@ ZrO2-SO3H as Highly Efficient Recyclable Catalyst for the Green Synthesis of Fluoroquinolones. Letters in Organic Chemistry, 15, 739-746.
[13] Nakhaei, A. (2018). Nano-Fe3O4@ ZrO2-H3PO4 as an Efficient Recyclable Catalyst for the Neat Preparation of Thiazole Derivatives in Ordinary or Magnetized Water. Current Catalysis, 7, 72-78.
[14] Nakhaei, A. (2018). Nano-Fe3O4@ ZrO2 supported phosphomolybdic acid-catalyzed synthesis of 3-aminoalkylated indoles. Heterocyclic Letters, 8, 579-586.
[15] Nakhaei, A., &  Ramezani, S. (2017). Nano magnetic zirconia phosphoric acid as an efficient and recyclable catalyst for the clean synthesis of biscoumarins. Heterocyclic Letters, 7, 1035-1043.
[16] Nakhaei, A., Davoodnia, A., Yadegarian, S., &  Tavakoli-Hoseini, N. (2016). Metal oxide nanoparticles as reusable heterogeneous catalysts in the synthesis of 1, 4-dihydropyridine derivatives via solvent-free Hantzsch reaction: A comparative study. Iranian Journal of Organic Chemistry, 8, 1919-1927.
[17] Nakhaei, A., &  Nakhaei, H. (2018). Fe3O4@GO-Pr-SO3H as an efficient and recyclable catalyst for the synthesis of pyridine dicarbonitriles. Heterocyclic Letters, 8, 27-33.
[18] Nakhaei, A., Shojaee, S., Yaghoobi, E., &  Ramezani, S. (2017). Fast and green synthesis of 3, 4-dihydropyrimidin-2 (1h)-ones and-thiones using nanometasilica disulfuric acid as recyclable catalyst in water. Heterocyclic Letters, 7, 323-331.
[19] Nakhaei, A., Morsali, A., &  Davoodnia, A. (2017). An efficient green approach to aldol and cross-aldol condensations of ketones with aromatic aldehydes catalyzed by nanometasilica disulfuric acid in water. Russian Journal of General Chemistry, 87, 1073-1078.
[20] Nakhaei, A., Davoodnia, A., &  Yadegarian, S. (2018). An Efficient Green Approach for the Synthesis of Fluoroquinolones Using Nano Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst in two Forms of Water. Iranian Journal of Chemistry and Chemical Engineering, 37, 33-42.
[21] Nakhaei, A. (2017). Covalently bonded sulfonic acid magnetic graphene oxide promoted synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles. Heterocyclic Letters, 7, 967-973.
[22] Nakhaei, A., Davoodnia, A., &  Morsali, A. (2018). Computational Study of Regioselective Synthesis of Triflylpyrazole by Cycloaddition Reaction between Diphenyl Hydrazonoyl Chloride and Phenyl Triflyl Acetylene. Russian Journal of Physical Chemistry A, 92, 271-279.
[23] Nakhaei, A., &  Nakhaei, Z. (2017). Carbon-based solid acid as a highly efficient recyclable catalyst for the synthesis of biscoumarins in water. Heterocyclic Letters, 7, 605-611.
[24] Nakhaei, A., Davoodnia, A., &  Yadegarian, S. (2018). Application of ZrO2–SO3H as highly efficient recyclable nano-catalyst for the green synthesis of fluoroquinolones as potential antibacterial. Iranian Chemical Communication, 6, 6-15.
[25] Nakhaei, A., Davoodnia, A., &  Yadegarian, S. (2016). Application of Metal Oxide Nanoparticles as ReusableHeterogeneous Catalysts in the Synthesis of 1, 8-Dioxodecahydroacridines (A Comparative Study). Heterocyclic Letters, 6, 601-608.
[26] Nakhaei, A., Tousi, A. T., Shojaee, S., &  Yaghoobi, E. (2017). Another application of zirconia sulfuric acid as highly efficient recyclable nano-catalyst for selective cross-aldol condensations of ketones with aromatic aldehydes in water. Heterocyclic Letters, 7, 259-266.
[27] Fazlinezhad, M., Nakhaei, A., Eshghi, H., &  Saadatmandzadeh, M. (2019). Synthesis and molecular docking of novel N-((2-chloroquinolin-3-yl) methylene)-4-methylbenzenamine derivatives as anti-HIV-1 reverse transcriptase inhibitors. Iranian Chemical Communication, 7, 181-192.
[28] Yadegarian, S., Davoodnia, A., &  Nakhaei, A. (2015). Solvent-free synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles using nano Fe3O4@ SiO2-OSO3H as a stable and magnetically recyclable heterogeneous catalyst. Oriental Journal of Chemistry, 31, 573-579.
[29] Davoodnia, A., Nakhaei, A., Basafa, S., &  Tavakoli-Hoseini, N. (2018). Investigating effect of cerium (IV) sulfate tetrahydrate as reusable and heterogeneous catalyst for the onepot multicomponent synthesis of polyhydroquinolines. Advanced Journal of Chemistry-Section A, 1, 96-104.
[30] Davoodnia, A., Yadegarian, S., Nakhaei, A., &  Tavakoli-Hoseini, N. (2016). A comparative study of TiO 2, Al 2 O 3, and Fe 3 O 4 nanoparticles as reusable heterogeneous catalysts in the synthesis of tetrahydrobenzo [a] xanthene-11-ones. Russian Journal of General Chemistry, 86, 2849-2854.
[31] Nakhaei, A., &  Nakhaei, Z. (2017). Catalytic activity of ZrO2–SO3H as highly efficient recyclable nano-catalyst for the synthesis of tetrahydrobenzo [b] pyrans. Iranian Journal of Organic Chemistry, 9, 2135-2144.
[32] Moghimi, A., &  Yari, M. (2019). Review of procedures involving separation and Solid Phase Extraction for the determination of cadmium using spectrometric techniques. Journal of Chemical Reviews, 1, 1-18.
[33] Rezaeifard, A., Haddad, R., Jafarpour, M., &  Hakimi, M. (2014). {Mo132} nanoball as an efficient and cost-effective catalyst for sustainable oxidation of sulfides and olefins with hydrogen peroxide. ACS Sustainable Chemistry & Engineering, 2, 942-950.
[34] Kupwade, R. V. (2019). A Concise Review on Synthesis of Sulfoxides and Sulfones with Special Reference to Oxidation of Sulfides. Journal of Chemical Reviews, 1, 99-113.
[35] Nirmala, G. S., &  Muruganandam, L. (2019). Hydrodynamics in a Liquid Solid Circulating Fluidized Bed–A Review. Journal of Chemical Reviews, 1, 114-129.
[36] Grosso-Giordano, N. A., Schroeder, C., Okrut, A., Solovyov, A., Schöttle, C., Chassé, W., Marinković, N. a., Koller, H., Zones, S. I., &  Katz, A. (2018). Outer-sphere control of catalysis on surfaces: A comparative study of Ti (IV) single-sites grafted on amorphous versus crystalline silicates for alkene epoxidation. Journal of the American Chemical Society, 140, 4956-4960.
[37] Rezaeifard, A., Haddad, R., Jafarpour, M., &  Hakimi, M. (2013). Catalytic epoxidation activity of keplerate polyoxomolybdate nanoball toward aqueous suspension of olefins under mild aerobic conditions. Journal of the American Chemical Society, 135, 10036-10039.
[38] Nakhaei, A., &  Davoodnia, A. (2014). Application of a Keplerate type giant nanoporous isopolyoxomolybdate as a reusable catalyst for the synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles. Chinese Journal of Catalysis, 35, 1761-1767.
[39] Laufer, S. A., Zimmermann, W., &  Ruff, K. J. (2004). Tetrasubstituted imidazole inhibitors of cytokine release: probing substituents in the N-1 position. Journal of Medicinal Chemistry, 47, 6311-6325.
[40] Momahed Heravi, M., Karimi, N., &  Pooremami, S. (2019). One-Pot Three Components Synthesis of 2,4,5-Triaryl-Imidazoles Catalyzed by Caro's Acid-Silica Gel Under Solvent–Free Condition. Advanced Journal of Chemistry-Section A, 2, 73-78.
[41] Alizadeh, R., &  Ghazinia, N. (2019). Synthesis, Experimental and Theoretical Characterization of Co (III) Complexes of 2-Hydroxinaphthaldehyde. Advanced Journal of Chemistry-Section A, 2, 184-189.
[42] Antolini, M., Bozzoli, A., Ghiron, C., Kennedy, G., Rossi, T., &  Ursini, A. (1999). Analogues of 4, 5-bis (3, 5-dichlorophenyl)-2-trifluoromethyl-1H-imidazole as potential antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 9, 1023-1028.
[43] Uçucu, Ü., Karaburun, N. G., &  Işikdağ, İ. (2001). Synthesis and analgesic activity of some 1-benzyl-2-substituted-4, 5-diphenyl-1H-imidazole derivatives. Il Farmaco, 56, 285-290.
[44] Chang, L. L., Sidler, K. L., Cascieri, M. A., de Laszlo, S., Koch, G., Li, B., MacCoss, M., Mantlo, N., O'Keefe, S., &  Pang, M. (2001). Substituted imidazoles as glucagon receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 11, 2549-2553.
[45] Murry, J. A. (2003). Synthetic methodology utilized to prepare substituted imidazole p38 MAP kinase inhibitors. Current Opinion in Drug Discovery & Development, 6, 945-965.
[46] Takle, A. K., Brown, M. J., Davies, S., Dean, D. K., Francis, G., Gaiba, A., Hird, A. W., King, F. D., Lovell, P. J., &  Naylor, A. (2006). The identification of potent and selective imidazole-based inhibitors of B-Raf kinase. Bioorganic & Medicinal Chemistry Letters, 16, 378-381.
[47] Davoodnia, A., Heravi, M. M., Safavi-Rad, Z., &  Tavakoli-Hoseini, N. (2010). Green, one-pot, solvent-free synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles using a Brønsted acidic ionic liquid as novel and reusable catalyst. Synthetic Communications®, 40, 2588-2597.
[48] Emrani, A., Davoodnia, A., &  Tavakoli-Hoseini, N. (2011). Alumina supported ammonium dihydrogenphosphate (NH 4 H 2 PO 4/Al 2 O 3): Preparation, characterization and its application as catalyst in the synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles. Bulletin of the Korean Chemical Society, 32, 2385-2390.
[49] TavakoliHoseini, N., &  Davoodnia, A. (2011). CarbonBased Solid Acid as An Efficient and Reusable Catalyst for OnePot Synthesis of Tetrasubstituted Imidazoles under SolventFree Conditions. Chinese Journal of Chemistry, 29, 203-206.
[50] Sadeghi, B., Mirjalili, B. B. F., &  Hashemi, M. M. (2008). BF3· SiO2: an efficient reagent system for the one-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles. Tetrahedron Letters, 49, 2575-2577.
[51] Karimi, A. R., Alimohammadi, Z., Azizian, J., Mohammadi, A. A., &  Mohammadizadeh, M. (2006). Solvent-free synthesis of tetrasubstituted imidazoles on silica gel/NaHSO4 support. Catalysis Communications, 7, 728-732.
[52] Sirisha, K., Bikshapathi, D., Achaiah, G., &  Reddy, V. M. (2011). Synthesis, antibacterial and antimycobacterial activities of some new 4-aryl/heteroaryl-2, 6-dimethyl-3, 5-bis-N-(aryl)-carbamoyl-1, 4-dihydropyridines. European Journal of Medicinal Chemistry, 46, 1564-1571.
[53] Poupelin, J., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G., &  Lacroix, R. (1978). H4SiW12O40 catalyzed one-Pot synthesis of 12-Aryl-8, 9, 10, 12-tetrahydrobenzo [a] xanthen-11-ones under solvent-free conditions. European Journal of Medicinal Chemistry, 13, 67.
[54] Murthy, Y., Rajack, A., Ramji, M. T., Praveen, C., &  Lakshmi, K. A. (2012). Design, solvent free synthesis, and antimicrobial evaluation of 1, 4 dihydropyridines. Bioorganic & Medicinal Chemistry Letters, 22, 6016-6023.
[55] Trivedi, A., Dodiya, D., Dholariya, B., Kataria, V., Bhuva, V., &  Shah, V. (2011). Synthesis and Biological Evaluation of Some Novel 1, 4Dihydropyridines as Potential AntiTubercular Agents. Chemical Biology & Drug Design, 78, 881-886.
[56] Klusa, V. (1995). Cerebrocrast. Neuroprotectant, cognition enhancer. Drugs of the Future, 20, 135-138.
[57] Sun, C., Chen, Y., Liu, T., Wu, Y., Fang, T., Wang, J., &  Xing, J. (2012). cisNitenpyram Analogues Containing 1, 4Dihydropyridine: Synthesis, Insecticidal Activities, and Molecular Docking Studies. Chinese Journal of Chemistry, 30, 1415-1422.
[58] Pohlers, G., Scaiano, J., &  Sinta, R. (1997). A novel photometric method for the determination of photoacid generation efficiencies using benzothiazole and xanthene dyes as acid sensors. Chemistry of Materials, 9, 3222-3230.
[59] Hilderbrand, S. A., &  Weissleder, R. (2007). One-pot synthesis of new symmetric and asymmetric xanthene dyes. Tetrahedron Letters, 48, 4383-4385.
[60] Knight, C. G., &  Stephens, T. (1989). Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochemical Journal, 258, 683-687.
[61] Furuta, T., Shibata, S., Kodama, I., &  Yamada, K. (1983). Cardiovascular effects of FR34235, a new dihydropyridine slow channel blocker, in isolated rabbit myocardium and aorta. Journal of Cardiovascular Pharmacology, 5, 836-841.
[62] Nakhaei, A., Davoodnia, A., &  Morsali, A. (2015). Extraordinary catalytic activity of a Keplerate-type giant nanoporous isopolyoxomolybdate in the synthesis of 1, 8-dioxo-octahydroxanthenes and 1, 8-dioxodecahydroacridines. Research on Chemical Intermediates, 41, 7815-7826.
[63] Nakhaei, A., &  Yadegarian, S. (2017). An efficient synthesis of 14-substituted-14H-dibenzo [a, j] xanthene derivatives promoted by a nano isopolyoxomolybdate under thermal and solvent-free conditions. Iranian Journal of Organic Chemistry, 9, 2057-2065.
[64] Rashedian, F., Saberi, D., &  Niknam, K. (2010). SilicaBonded NPropyl Sulfamic Acid: A Recyclable Catalyst for the Synthesis of 1, 8Dioxodecahydroacridines, 1, 8Dioxooctahydroxanthenes and Quinoxalines. Journal of the Chinese Chemical Society, 57, 998-1006.
[65] Niknam, K., Panahi, F., Saberi, D., &  Mohagheghnejad, M. (2010). Silicabonded Ssulfonic acid as recyclable catalyst for the synthesis of 1, 8dioxodecahydroacridines and 1, 8dioxooctahydroxanthenes. Journal of Heterocyclic Chemistry, 47, 292-300.
[66] Dabiri, M., Baghbanzadeh, M., &  Arzroomchilar, E. (2008). 1-Methylimidazolium triflouroacetate ([Hmim] TFA): An efficient reusable acidic ionic liquid for the synthesis of 1, 8-dioxo-octahydroxanthenes and 1, 8-dioxo-decahydroacridines. Catalysis Communications, 9, 939-942.
[67] Shaterian, H. R., Ghashang, M., &  Mir, N. (2007). Aluminium hydrogensulfate as an efficient and. Arkivoc, 15, 1-10.
[68] Sen, R. N., &  Sarkar, N. N. (1925). The condensation of primary alcohols with resorcinol and other hydroxy aromatic compounds. Journal of the American Chemical Society, 47, 1079-1091.
[69] Van Allan, J. A., Giannini, D. D., &  Whitesides, T. H. (1982). Dibenzoxanthene derivatives and related products from. beta.-naphthol and aldehydes or acetals. The Journal of Organic Chemistry, 47, 820-823.
[70] Cooper, K., Fray, M. J., Parry, M. J., Richardson, K., &  Steele, J. (1992). 1, 4-Dihydropyridines as antagonists of platelet activating factor. 1. Synthesis and structure-activity relationships of 2-(4-heterocyclyl) phenyl derivatives. Journal of Medicinal Chemistry, 35, 3115-3129.
[71] Triggle, D. J. (2007). Calcium channel antagonists: Clinical uses—Past, present and future. Biochemical Pharmacology, 74, 1-9.
[72] Klimaviciusa, L., Klusa, V., Duburs, G., Kaasik, A., Kalda, A., &  Zharkovsky, A. (2007). Distinct effects of atypical 1,4-dihydropyridines on 1-methyl-4-phenylpyridinium-induced toxicity. Cell Biochemistry and Function, 25, 15-21.
[73] Zolfigol, M. A., Salehi, P., Khorramabadi-Zad, A., &  Shayegh, M. (2007). Iodine-catalyzed synthesis of novel Hantzsch N-hydroxyethyl 1, 4-dihydropyridines under mild conditions. Journal of Molecular Catalysis A: Chemical, 261, 88-92.
[74] Jahanbin, B., Davoodnia, A., Behmadi, H., &  Tavakoli-Hoseini, N. (2012). Polymer support immobilized acidic ionic liquid: Preparation and its application as catalyst in the synthesis of Hantzsch 1, 4-dihydropyridines. Bulletin of the Korean Chemical Society, 33, 2140-2144.
[75] Wang, X., Gong, H., Quan, Z., Li, L., &  Ye, H. (2011). One-Pot, Three-Component Synthesis of 1, 4-Dihydropyridines in PEG-400. Synthetic Communications, 41, 3251-3258.
[76] Kumar, A., Maurya, R. A., Sharma, S., Kumar, M., &  Bhatia, G. (2010). Synthesis and biological evaluation of N-aryl-1,4-dihydropyridines as novel antidyslipidemic and antioxidant agents. European Journal of Medicinal Chemistry, 45, 501-509.
[77] Nakhaei, A., Yadegarian, S., &  Davoodnia, A. (2016). Efficient and rapid hantzsch synthesis of1, 4-dihydropyridines using a nano isopolyoxomolybdate as a reusable catalyst under solvent-free condition. Heterocyclic Letters, 6, 329-339.
[78] Biginelli, P. (1891). Ueber aldehyduramide des acetessigäthers. Berichte der Deutschen Chemischen Gesellschaft, 24, 1317-1319.
[79] Kalita, H. R., &  Phukan, P. (2007). CuI as reusable catalyst for the Biginelli reaction. Catalysis Communications, 8, 179-182.
[80] Heravi, M. M., Asadi, S., &  Lashkariani, B. M. (2013). Recent progress in asymmetric Biginelli reaction. Molecular Diversity, 17, 389-407.
[81] Rodríguez-Domínguez, J. C., Bernardi, D., &  Kirsch, G. (2007). ZrCl4 or ZrOCl2 under neat conditions: optimized green alternatives for the Biginelli reaction. Tetrahedron Letters, 48, 5777-5780.
[82] Kamble, V., Atkore, S., Pisal, P., Sadaf, M., &  Thakre, R. V. (2016). Tetrabutylammonium bromide-Cesium carbonate: new reagent system for the synthesis of substituted pyridines at room temperature. Quarterly Iranian Chemical Communication, 4, 186-197.
[83] Ma, Y., Qian, C., Wang, L., &  Yang, M. (2000). Lanthanide triflate catalyzed Biginelli reaction. One-pot synthesis of dihydropyrimidinones under solvent-free conditions. The Journal of Organic Chemistry, 65, 3864-3868.
[84] Hu, E. H., Sidler, D. R., &  Dolling, U.-H. (1998). Unprecedented catalytic three component one-pot condensation reaction: an efficient synthesis of 5-alkoxycarbonyl-4-aryl-3, 4-dihydropyrimidin-2 (1H)-ones. The Journal of Organic Chemistry, 63, 3454-3457.
[85] Kappe, C. O., Fabian, W. M., &  Semones, M. A. (1997). Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron, 53, 2803-2816.
[86] Nasehi, P., Kiasat, A., &  Mohammadi, M. K. (2014). Ag nanoparticle/melamine sulfonic acid supported on silica gel as an efficient catalytic system for synthesis of dihydropyrimidin thiones. Iranian Chemical Communication, 2, 180-186.
[87] Farhadi, A., Takassi, M. A., &  Hejazi, L. (2017). One-pot synthesis of 2-oxo-1, 2, 3, 4-tetrahydropyrimidines using homogeneous catalyst under solvent-free conditions. Iranian Chemical Communication, 5, 35-41.
[88] Dashtizadeh, M., Khalili, M., Reghbat, F., Abdi, E., Bahadori, Z., Sadripour, Z., Zare, A., Didehban, K., &  Sajadikhah, S. S. (2019). N1, N1, N2, N2-Tetramethyl-N1, N2-bis (sulfo) ethane-1, 2-diaminium chloride as a highly efficient catalyst for synthesis of some nitrogen-and oxygen-containing heterocyclic compounds. Iranian Chemical Communication, 7, 257-270.
[89] Azimi, S., &  Hariri, M. (2016). Solvent-free and one-pot Biginelli synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones and 3, 4-dihydropyrimidin-2 (1H)-thiones using ionic liquid N, N-diethyl-N-sulfoethanammonium chloride {[Et3N–SO3H] Cl} as a green catalyst. Quarterly Iranian Chemical Communication, 4, 13-20.
[90] Rezaee Nezhad, E., Abbasi, Z., Rahimi Moghaddam, M., &  Attaei, M. A. (2013). Ni2+ supported on hydroxyapatite-core@ shell γ-Fe2O3 nanoparticles as new and green catalyst for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones under solvent-free condition. Quarterly Iranian Chemical Communication, 1, 35-42.
[91] Nakhaei, A., Davoodnia, A., &  Yadegarian, S. (2016). Nano isopolyoxomolybdate catalyzed Biginelli reaction for one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones and 3, 4-dihydropyrimidin-2 (1H)-thiones under solvent-free conditions. Russian Journal of General Chemistry, 86, 2870-2876.
[92] Zare, A., Dashtizadeh, M., &  Merajoddin, M. (2015). Melamine trisulfonic acid as a highly efficient catalyst for the synthesis of polyhydroquinolines under solvent-free conditions. Quarterly Iranian Chemical Communication, 3, 208-217.
[93] Somwanshi, A., Pandit, Y. B., Gholap, A., Ghogare, R., &  Pandit, S. (2017). LaCl3. 7H20: An efficient catalyst for one-pot multi-component synthesis of 1, 4-polyhydroquinoline derivatives through unsymmetrical Hantzsch reaction. Quarterly Iranian Chemical Communication, 5, 293-300.
[94] Davoodnia, A., Khashi, M., &  Tavakoli-Hoseini, N. (2013). Tetrabutylammonium hexatungstate [TBA] 2 [W6O19]: Novel and reusable heterogeneous catalyst for rapid solvent-free synthesis of polyhydroquinoline via unsymmetrical Hantzsch reaction. Chinese Journal of Catalysis, 34, 1173-1178.
[95] Davoodnia, A., &  Nakhaei, A. (2016). Fast and Solvent-Free Synthesis of Polyhydroquinolines Catalyzed by a Keplerate Type Giant Nanoporous Isopolyoxomolybdate as a Reusable Catalyst. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46, 1073-1080.
[96] Heydari, A., Khaksar, S., Tajbakhsh, M., &  Bijanzadeh, H. R. (2009). One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives in fluoro alcohols. Journal of Fluorine Chemistry, 130, 609-614.
[97] Heravi, M. M., Bakhtiari, K., Javadi, N. M., Bamoharram, F. F., Saeedi, M., &  Oskooie, H. A. (2007). K7 [PW11CoO40]-catalyzed one-pot synthesis of polyhydroquinoline derivatives via the Hantzsch three component condensation. Journal of Molecular Catalysis A: Chemical, 264, 50-52.
[98] Tajbakhsh, M., Alaee, E., Alinezhad, H., Khanian, M., Jahani, F., Khaksar, S., Rezaee, P., &  Tajbakhsh, M. (2012). Titanium dioxide nanoparticles catalyzed synthesis of Hantzsch esters and polyhydroquinoline derivatives. Chinese Journal of Catalysis, 33, 1517-1522.
[99] Foye, W. (1991). Prinicipi di Chemico Farmaceutica Piccin. Padova, Italy, 416,
[100] Motamedi, R., Rezanejade Bardajee, G., &  Shakeri, S. (2017). Cu (II)-Schiff base/SBA-15 as an efficient catalyst for synthesis of chromeno [4′, 3′-b] pyrano [6, 5-b] quinoline derivatives. Iranian Chemical Communication, 5, 442-448.
[101] Motamedi, R., Ebrahimi, F., &  Rezanejade Bardajee, G. (2019). Cu (II)-Schiff Base/SBA-15 as an efficient catalyst for synthesis of benzopyrano [3, 2-c] chromene-6, 8-dione derivatives. Asian Journal of Green Chemistry, 3, 22-33.
[102] Rohaniyan, M., Davoodnia, A., &  Nakhaei, A. (2016). Another application of (NH4) 42 [MoVI72MoV60O372 (CH3COO) 30 (H2O) 72] as a highly efficient recyclable catalyst for the synthesis of dihydropyrano [3, 2c] chromenes. Applied Organometallic Chemistry, 30, 626-629.
[103] Maghsoodlou, M. T., Hazeri, N., Lashkari, M., Shahrokhabadi, F. N., Naghshbandi, B., Kazemi-doost, M. S., Rashidi, M., Mir, F., Kangani, M., &  Salahi, S. (2015). Saccharose as a new, natural, and highly efficient catalyst for the one-pot synthesis of 4, 5-dihydropyrano [3, 2-c] chromenes, 2-amino-3-cyano-4H-chromenes, á1, 8-dioxodecahydroacridine, and 2-substituted benzimidazole derivatives. Research on Chemical Intermediates, 41, 6985-6997.
[104] Heravi, M. M., Jani, B. A., Derikvand, F., Bamoharram, F. F., &  Oskooie, H. A. (2008). Three component, one-pot synthesis of dihydropyrano [3, 2-c] chromene derivatives in the presence of H6P2W18O62· 18H2O as a green and recyclable catalyst. Catalysis Communications, 10, 272-275.
[105] Khoobi, M., Alipour, M., Moradi, A., Sakhteman, A., Nadri, H., Razavi, S. F., Ghandi, M., Foroumadi, A., &  Shafiee, A. (2013). Design, synthesis, docking study and biological evaluation of some novel tetrahydrochromeno [3′, 4′: 5, 6] pyrano [2, 3-b] quinolin-6 (7H)-one derivatives against acetyl-and butyrylcholinesterase. European Journal of Medicinal Chemistry, 68, 291-300.
[106] Burke Jr, T. R., Lim, B., Marquez, V. E., Li, Z. H., Bolen, J. B., Stefanova, I., &  Horak, I. D. (1993). Bicyclic compounds as ring-constrained inhibitors of protein-tyrosine kinase p56lck. Journal of Medicinal Chemistry, 36, 425-432.
[107] Edraki, N., Firuzi, O., Foroumadi, A., Miri, R., Madadkar-Sobhani, A., Khoshneviszadeh, M., &  Shafiee, A. (2013). Phenylimino-2H-chromen-3-carboxamide derivatives as novel small molecule inhibitors of β-secretase (BACE1). Bioorganic & Medicinal Chemistry, 21, 2396-2412.
[108] Soliman, M. H., Mohamed, G. G., &  Elgemeie, G. H. (2016). Novel synthesis of 2-imino-2H-chromene-3-carboximide metal complexes. Journal of Thermal Analysis and Calorimetry, 123, 583-594.
[109] Kaur Gill, R., Kumari, J., &  Bariwal, J. (2017). New 2-imino-2H-chromene-3 (N-aryl) carboxamides as potential cytotoxic agents. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 17, 85-92.
[110] Edraki, N., Iraji, A., Firuzi, O., Fattahi, Y., Mahdavi, M., Foroumadi, A., Khoshneviszadeh, M., Shafiee, A., &  Miri, R. (2016). 2-Imino 2H-chromene and 2-(phenylimino) 2H-chromene 3-aryl carboxamide derivatives as novel cytotoxic agents: synthesis, biological assay, and molecular docking study. Journal of the Iranian Chemical Society, 13, 2163-2171.
[111] Helal, M. H., Ali, E.-H., Gameel, A., Ali, A. A., &  Ammar, Y. A. (2010). One-step synthesis of chromene-3-carboxamide, bis-chromene, chromeno [3, 4-c] pyridine and bischromeno [3, 4-c] pyridine derivatives for antimicrobial evaluation. Journal of Chemical Research, 34, 465-469.
[112] Kiyani, H., &  Daroonkala, M. D. (2015). A cost-effective and green aqueous synthesis of 3-substituted coumarins catalyzed by potassium phthalimide. Bulletin of the Chemical Society of Ethiopia, 29, 449-456.
[113] Areias, F., Costa, M., Castro, M., Brea, J., Gregori-Puigjané, E., Proença, M. F., Mestres, J., &  Loza, M. I. (2012). New chromene scaffolds for adenosine A2A receptors: Synthesis, pharmacology and structure–activity relationships. European Journal of Medicinal Chemistry, 54, 303-310.
[114] Shi, X. L., Xing, X., Lin, H., &  Zhang, W. (2014). Synthesis of Polyacrylonitrile FiberSupported Poly (ammonium methanesulfonate) s as Active and Recyclable Heterogeneous Brønsted Acid Catalysts. Advanced Synthesis & Catalysis, 356, 2349-2354.
[115] Guo, D., Chen, T., Ye, D., Xu, J., Jiang, H., Chen, K., Wang, H., &  Liu, H. (2011). Cell-permeable iminocoumarine-based fluorescent dyes for mitochondria. Organic Letters, 13, 2884-2887.
[116] Kovalenko, S., Bylov, I., Sytnik, K., Chernykh, V., &  Bilokin, Y. (2000). A New Pathway to 3-Hetaryl-2-oxo-2H-chromenes: On the Proposed Mechanisms for the Reaction of 3-Carbamoyl-2-iminochromenes with Dinucleophiles. Molecules, 5, 1146-1165.
[117] Jooya, A., Davoodnia, A., Fattahi, M., &  Tavakoli-Hoseini, N. (2018). Rapid Synthesis of N-Alkyl-2-imino-2 H-chromene-3-carboxamides Catalyzed by a Keplerate-type Giant Nanoporous Isopolyoxomolybdate. Organic Preparations and Procedures International, 50, 565-574.
[118] Ashok, D., Lakshmi, B. V., Ganesh, A., Ravi, S., Adam, S., &  Murthy, S. (2014). Microwave-assisted synthesis of 8-aryl-10-chloro-4-methyl-2-oxo-2, 8-dihydropyrano [2, 3-f] chromene-9-carbaldehydes and their antimicrobial activity. Russian Journal of General Chemistry, 84, 2234-2239.
[119] Fouda, A. M. (2016). Synthesis of several 4H-chromene derivatives of expected antitumor activity. Medicinal Chemistry Research, 25, 1229-1238.
[120] Kandeel, M. M., Kamal, A. M., Abdelall, E. K., &  Elshemy, H. A. (2013). Synthesis of novel chromene derivatives of expected antitumor activity. European Journal of Medicinal Chemistry, 59, 183-193.
[121] Magu, T. O., Agobi, A. U., HITLER, L., &  Dass, P. M. (2019). A Review on Conducting Polymers-Based Composites for Energy Storage Application. Journal of Chemical Reviews, 1, 19-34.
[122] Karimi, N., Davoodnia, A., &  Pordel, M. (2017). Another application of a keplerate type giant nanoporous isopolyoxomolybdate as highly efficient reusable catalyst for the one-pot synthesis of polyfunctionalized 4h-chromenes. Heterocyclic Letters, 7, 267-273.
[123] Grivsky, E. M., Lee, S., Sigel, C. W., Duch, D. S., &  Nichol, C. A. (1980). Synthesis and antitumor activity of 2, 4-diamino-6-(2, 5-dimethoxybenzyl)-5-methylpyrido [2, 3-d] pyrimidine. Journal of Medicinal Chemistry, 23, 327-329.
[124] Valderrama, J. A., Colonelli, P., Vásquez, D., González, M. F., Rodríguez, J. A., &  Theoduloz, C. (2008). Studies on quinones. Part 44: Novel angucyclinone N-heterocyclic analogues endowed with antitumoral activity. Bioorganic & Medicinal Chemistry, 16, 10172-10181.
[125] Asif, M. (2019). Calcium Sensitizing and Phosphodiesterase-III Inhibitory Activity of Pyridazine Compounds: A Review. Journal of Chemical Reviews, 1, 47-65.
[126] Asif, M. (2019). A Review on Pyridazinone Ring Containing Various Cardioactive Agents. Journal of Chemical Reviews, 1, 66-77.
[127] Heber, D., Heers, C., &  Ravens, U. (1993). Positive inotropic activity of 5-amino-6-cyano-1, 3-dimethyl-1, 2, 3, 4-tetrahydropyrido [2, 3-d] pyrim idine-2, 4-dione in cardiac muscle from guinea-pig and man. Part 6: Compounds with positive inotropic activity. Die Pharmazie, 48, 537-541.
[128] Furuya, S., &  Ohtaki, T. (1994). Pyrido [2, 3-d] pyrimidines and their uses as anatagonists. Eur Pat Appl Ep, 608565,
[129] Bagley, M. C., Hughes, D. D., Lubinu, M. C., Merritt, E. A., Taylor, P. H., &  Tomkinson, N. C. (2004). Microwaveassisted synthesis of pyrimidine libraries. QSAR & Combinatorial Science, 23, 859-867.
[130] Ahmadi, T., Davoodnia, A., Pordel, M., Fattahi, M., Ebrahimi, M., Tavakoli-Hoseini, N., &  Nakhaei, A. (2017). Highly efficient one-pot synthesis of pyrano [2, 3-d] pyrimidines: Another application of a keplerate type giant nanoporous isopolyoxomolybdate as a reusable catalyst. Heterocyclic Letters, 7, 27-34.
[131] Stein, G. E., &  Goldstein, E. J. (2006). Fluoroquinolones and anaerobes. Clinical Infectious Diseases, 42, 1598-1607.
[132] Golet, E. M., Strehler, A., Alder, A. C., &  Giger, W. (2002). Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Analytical Chemistry, 74, 5455-5462.
[133] Llorente, B., Leclerc, F., &  Cedergren, R. (1996). Using SAR and QSAR analysis to model the activity and structure of the quinolone—DNA complex. Bioorganic & Medicinal Chemistry, 4, 61-71.
[134] Oh, Y. S., Lee, C. W., Chung, Y. H., Yoon, S. J., &  Cho, S. H. (1998). Syntheses of new pyridonecarboxylic acid derivatives containing 3, 5or 6quinolyl substituents at N1 and their antiHIVRT activities. Journal of Heterocyclic Chemistry, 35, 541-550.
[135] Mirzaie, Y., Lari, J., Vahedi, H., Hakimi, M., Nakhaei, A., &  Rezaeifard, A. (2017). Fast and Green Method to Synthesis of Quinolone Carboxylic Acid Derivatives Using Giant-Ball Nanoporous Isopolyoxomolybdate as Highly Efficient Recyclable Catalyst in Refluxing Water. Journal of the Mexican Chemical Society, 61, 35-40.
[136] Sakthivel, K., Notz, W., Bui, T., &  Barbas, C. F. (2001). Amino acid catalyzed direct asymmetric aldol reactions: a bioorganic approach to catalytic asymmetric carbon− carbon bond-forming reactions. Journal of the American Chemical Society, 123, 5260-5267.
[137] Casiraghi, G., Zanardi, F., Appendino, G., &  Rassu, G. (2000). The vinylogous aldol reaction: a valuable, yet understated carbon− carbon bond-forming maneuver. Chemical Reviews, 100, 1929-1972.
[138] Serganov, A., Keiper, S., Malinina, L., Tereshko, V., Skripkin, E., Höbartner, C., Polonskaia, A., Phan, A. T., Wombacher, R., &  Micura, R. (2005). Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation. Nature Structural & Molecular Biology, 12, 218.
[139] Shinokubo, H., &  Oshima, K. (2004). Transition MetalCatalyzed Carbon Carbon Bond Formation with Grignard Reagents− Novel Reactions with a Classic Reagent. European Journal of Organic Chemistry, 2004, 2081-2091.
[140] Hirabayashi, K., Nishihara, Y., Mori, A., &  Hiyama, T. (1998). A novel C-C bond forming reaction of aryl-and alkenylsilanols. A halogen-free Mizoroki-Heck type reaction. Tetrahedron Letters, 39, 7893-7896.
[141] Curtis, M., &  Beak, P. (1999). Asymmetric Carbon-Carbon Bond Formation in Michael Reactions: Conjugate Addition Reactions of Configurationally Stable Benzylic and Allylic Organolithium Species. The Journal of Organic Chemistry, 64, 2996-2997.
[142] Shen, Y. (1998). New Synthetic Methodologies for Carbon-Carbon Double Bond Formation. Accounts of Chemical Research, 31, 584-592.
[143] Borges, F., Roleira, F., Milhazes, N., Santana, L., &  Uriarte, E. (2005). Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Current Medicinal Chemistry, 12, 887-916.
[144] Sajjadifar, S., Hamidi, H., &  Pal, K. (2019). Revisiting of Boron Sulfonic Acid Applications in Organic Synthesis: Mini-Review. Journal of Chemical Reviews, 1, 35-46.
[145] Hosseinzadeh, Z., Ramazani, A., &  Razzaghi-Asl, N. (2019). Plants of the Genus Heracleum as a Source of Coumarin and Furanocoumarin. Journal of Chemical Reviews, 1, 78-98.
[146] Makris, M., &  Watson, H. (2001). The management of coumarininduced overanticoagulation. British Journal of Haematology, 114, 271-280.
[147] Sharma, R., Negi, D. S., Shiu, W. K., &  Gibbons, S. (2006). Characterization of an insecticidal coumarin from Boenninghausenia albiflora. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20, 607-609.
[148] Peng, X.-M., LV Damu, G., &  Zhou, H. (2013). Current developments of coumarin compounds in medicinal chemistry. Current Pharmaceutical Design, 19, 3884-3930.
[149] Muhammad, N., Saeed, M., Khan, H., Adhikari, A., &  Khan, K. M. (2013). Muscle relaxant and sedative-hypnotic activities of extract of Viola betonicifolia in animal models supported by its isolated compound, 4-hydroxy Coumarin. Journal of Chemistry, 2013,
[150] Curir, P., Galeotti, F., Dolci, M., Barile, E., &  Lanzotti, V. (2007). Pavietin, a coumarin from Aesculus pavia with antifungal activity. Journal of Natural Products, 70, 1668-1671.
[151] Olomola, T. O., Klein, R., Mautsa, N., Sayed, Y., &  Kaye, P. T. (2013). Synthesis and evaluation of coumarin derivatives as potential dual-action HIV-1 protease and reverse transcriptase inhibitors. Bioorganic & Medicinal Chemistry, 21, 1964-1971.
[152] Van Schie, R. M., Wadelius, M., Kamali, F., Daly, A. K., Manolopoulos, V. G., De Boer, A., Barallon, R., Verhoef, T. I., Kirchheiner, J., &  Haschke-Becher, E. (2009). Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design. Pharmacogenomics, 10, 1687-1695.
[153] Hameed, A., Yaqub, M., Hussain, M., Hameed, A., Ashraf, M., Asghar, H., Naseer, M. M., Mahmood, K., Muddassar, M., &  Tahir, M. N. (2016). Coumarin-based thiosemicarbazones as potent urease inhibitors: synthesis, solid state self-assembly and molecular docking. RSC Advances, 6, 63886-63894.
[154] Davoodnia, A., Nakhaei, A., & Tavakoli-Hoseini, N. (2016). Catalytic performance of a Keplerate-type, giant-ball nanoporous isopolyoxomolybdate as a highly efficient recyclable catalyst for the synthesis of biscoumarins. Zeitschrift für Naturforschung B, 71, 219-225.