Document Type : Short Review Article
Authors
Department of Chemical Engineering, SCALE, VIT University, Vellore, India, 632014.
Abstract
Liquid solid circulating fluidised bed and its performance at various operating conditions have been critically reviewed and reported. Hydrodynamic includes pressure drop across the bed, phase hold up distribution, flow regime, flow structure of each phase and solid circulation rate. Detailed analysis of axial and radial solid distributions, average solid holdup, solid circulation rate, critical transitional velocity for solid at different densities and fluids at varying viscosities was reported. The effect of the increase in liquid viscosity during heat and mass transfer phenomena in LSCFB has to be studied extensively as the industrial processing fluids are highly viscous.
Graphical Abstract
Keywords
Main Subjects
[1] Richardson, J. F., & Zaki, W. N. (1954). The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chemical Engineering Science, 3(2), 65-73.
[2] Zhu, J. X., Karamanev, D. G., Bassi, A. S., & Zheng, Y. (2000). (Gas‐) liquid‐solid circulating fluidized beds and their potential applications to bioreactor engineering. The Canadian Journal of Chemical Engineering, 78(1), 82-94.
[3] Liang, W., Yu, Z., Jin, Y., Wang, Z., Wang, Y., He, M., & Min, E. (1995). Synthesis of linear alkylbenzene in a liquid–solid circulating fluidized bed reactor. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 62(1), 98-102.
[4] Lan, Q., Bassi, A., Zhu, J. X., & Margaritis, A. (2002). Continuous protein recovery from whey using liquid‐solid circulating fluidized bed ion‐exchange extraction. Biotechnology and bioengineering, 78(2), 157-163.
[5] Lan, Q., Bassi, A. S., Zhu, J. X., & Margaritis, A. (2002). Continuous protein recovery with a liquid–solid circulating fluidized‐bed ion exchanger. AIChE journal, 48(2), 252-261.
[6] Feng, X., Jing, S., Wu, Q., Chen, J., & Song, C. (2003). The hydrodynamic behavior of the liquid–solid circulating fluidized bed ion exchange system for cesium removal. Powder technology, 134(3), 235-242.
[7] Cui, Y., Nakhla, G., Zhu, J., & Patel, A. (2004). Simultaneous carbon and nitrogen removal in anoxic-aerobic circulating fluidized bed biological reactor (CFBBR). Environmental technology, 25(6), 699-712.
[8] Patel, A., Zhu, J., & Nakhla, G. (2006). Simultaneous carbon, nitrogen and phosphorous removal from municipal wastewater in a circulating fluidized bed bioreactor. Chemosphere, 65(7), 1103-1112.
[9] Trivedi, U.J., A. S. Bassi and J. Zhu. Liquid-Solid Circulating Fluidized Beds: An Attractive Immobilized Bioreactor System to Treat Phenolic Pollutants, . in 8th international Conference on Circulating Fluidized Beds. 2005. International Academic Publishers and World Publishing Corporation, China.
[10] Trivedi, U., Bassi, A., & Zhu, J. X. J. (2006). Continuous enzymatic polymerization of phenol in a liquid–solid circulating fluidized bed. Powder technology, 169(2), 61-70.
[11] Patel, M., Bassi, A. S., Zhu, J. J. X., & Gomaa, H. (2008). Investigation of a dual‐particle liquid–solid circulating fluidized bed bioreactor for extractive fermentation of lactic acid. Biotechnology progress, 24(4), 821-831.
[12] Ilamathi, R., Nirmala, G. S., & Muruganandam, L. (2014). Heavy metals biosorption in liquid solid fluidized bed by immobilized consortia in alginate beads. International Journal of ChemTech Research, 6, 652-662.
[13] Chen, Y. M., Jang, C. S., Cai, P., & Fan, L. S. (1991). On the formation and disintegration of particle clusters in a liquid-solid transport bed. Chemical engineering science, 46(9), 2253-2268.
[14] Liang, W. G., Zhu, J. X., Jin, Y., Yu, Z. Q., Wang, Z. W., & Zhou, J. (1996). Radial nonuniformity of flow structure in a liquid-solid circulating fluidized bed. Chemical Engineering Science, 51(10), 2001-2010.
[15] Liang, W. G., & Zhu, J. X. (1997). A core-annulus model for the radial flow structure in a liquid-solid circulating fluidized bed (LSCFB). Chemical Engineering Journal, 68(1), 51-62.
[16] Liang, W., Zhang, S., Zhu, J. X., Jin, Y., Yu, Z., & Wang, Z. (1997). Flow characteristics of the liquid–solid circulating fluidized bed. Powder Technology, 90(2), 95-102.
[17] Liang, W. G., & Zhu, J. X. (1997). Effect of Radial Flow Nonuniformity on the Alkylation Reaction in a Liquid− Solid Circulating Fluidized Bed (LSCFB) Reactor. Industrial & engineering chemistry research, 36(11), 4651-4658.
[18] Kuramoto, K., Tanaka, K., Tsutsumi, A., Yoshida, K., & Chiba, T. (1998). Macroscopic flow structure of solid particles in circulating liquid-solid fluidized bed riser. Journal of chemical engineering of Japan, 31(2), 258-265.
[19] Zheng, Y., Zhu, J. X., Wen, J., Martin, S. A., Bassi, A. S., & Margaritis, A. (1999). The axial hydrodynamic behavior in a liquid‐solid circulating fluidized bed. The Canadian Journal of Chemical Engineering, 77(2), 284-290.
[20] Zheng, Y., & Zhu, J. X. J. (2000). Overall pressure balance and system stability in a liquid–solid circulating fluidized bed. Chemical Engineering Journal, 79(2), 145-153.
[21] Gibilaro, L. G., Di Felice, R., & Foscolo, P. U. (1988). A circulating liquid fluidised bed. Chemical engineering science, 43(10), 2901-2903.
[22] Liang, W., Yu, Z., Jin, Y., Wang, Z., & Wu, Q. (1995). The phase holdups in a gas-liquid-solid circulating fluidized bed. The Chemical Engineering Journal and The Biochemical Engineering Journal, 58(3), 259-264.
[23] Zheng, Y., & Zhu, J. X. J. (2001). The onset velocity of a liquid–solid circulating fluidized bed. Powder technology, 114(1-3), 244-251.
[24] Zheng, Y., Zhu, J. X., Marwaha, N. S., & Bassi, A. S. (2002). Radial solids flow structure in a liquid–solids circulating fluidized bed. Chemical Engineering Journal, 88(1-3), 141-150.
[25] Zheng, Y., & Zhu, J. X. (2000). Microstructural aspects of the flow behaviour in a liquid-solids circulating fluidized bed. The Canadian Journal of Chemical Engineering, 78(1), 75-81.
[26] Cho, Y. J., Song, P. S., Lee, C. G., Kang, Y., Kim, S. D., & Fan, L. T. (2005). Liquid radial dispersion in liquid-solid circulating fluidized beds with viscous liquid medium. Chem. Eng. Comm., 192(3), 257-271.
[27] Liang, W., Wu, Q., Yu, Z., Jin, Y., & Wang, Z. (1995). Hydrodynamics of a gas‐liquid‐solid three phase circulating fluidized bed. The Canadian Journal of Chemical Engineering, 73(5), 656-661.
[28] Yang, W., Wang, J., Zhou, L., & Jin, Y. (1999). Gas–liquid mass transfer behavior in three-phase CFB reactors. Chemical engineering science, 54(22), 5523-5528.
[29] Yang, W. G., Wang, J. F., Chen, W., & Jin, Y. (1999). Liquid-phase flow structure and backmixing characteristics of gas–liquid–solid three-phase circulating fluidized bed. Chemical engineering science, 54(21), 5293-5298.
[30] Zhu, J. X., & Manyele, S. V. (2001). Radial nonuniformity index (RNI) in fluidized beds and other multiphase flow systems. The Canadian Journal of Chemical Engineering, 79(2), 203-213.
[31] Zheng, Y., & Zhu, J. (2003). Radial distribution of liquid velocity in a liquid-solids circulating fluidized bed. International Journal of Chemical Reactor Engineering, 1(1).
[32] Rao, V. B., Sailu, C., & Sandilya, D. K. (2007). An experimental study of liquid-particle flow in circulating fluidized bed. Chemical Engineering Communications, 194(3), 353-367.
[33] Rao, V. B., Santhosha, W. S & Bala Narsaiah T (2007), Modelling of Flow Structure Near the Wall in Circulating Fluidised Bed, Indian Chemical Engineer, 49(1), 38-44.
[34] Vidyasagar, S., Krishnaiah, K., & Sai, P. S. T. (2008). Hydrodynamics of a liquid–solid circulating fluidized bed: Effect of dynamic leak. Chemical Engineering Journal, 138(1-3), 425-435.
[35] Shilapuram, V., Krishnaiah, K., & Sai, P. S. T. (2009). Comparison of macroscopic flow properties obtained by three methods of operation in a liquid–solid circulating fluidized bed. Chemical Engineering and Processing: Process Intensification, 48(1), 259-267.
[36] Vidyasagar, S., Krishnaiah, K., & Sai, P. S. T. (2011). Macroscopic properties of liquid–solid circulating fluidized bed with viscous liquid medium. Chemical Engineering and Processing: Process Intensification, 50(1), 42-52.
[37] Sang, L., & Zhu, J. (2012). Experimental investigation of the effects of particle properties on solids holdup in an LSCFB riser. Chemical engineering journal, 197, 322-329.
[38] Nirmala, G., Muruganandam, L., & Kumar, P. (2014). Viscosity Effects on Solid Circulation Rate in a Liquid Solid Circulating Fluidized Bed. Journal of Applied Sciences, 14(10), 1037-1042.
[39] Nirmala, G. S., & Muruganandam, L. (2013). Hydrodynamics Studies in a Liquid Solid Circulating Fluidized Bed of Varying Liquid Viscosity. Journal of The Institution of Engineers (India): Series E, 94(2), 73-78.
[40] Nirmala, G., Muruganandam, L., & Kumar, P. (2014). Solid holdup in liquid solid circulating fluidized bed with viscous liquid medium. Alexandria Engineering Journal, 53(4), 959-968.Engineering Journal, 2014. 53(4): p. 959-968.
[41] Natarajan, P., Velraj, R., & Seeniraj, R. V. (2008). Effect of various parameters on the solid circulation rate in a liquid–solid circulating fluidized bed. Asia‐Pacific Journal of Chemical Engineering, 3(4), 459-470.
[42] Palani, N., Ramalingam, V., Ramadoss, G., & Seeniraj, R. V. (2011). Study of slip velocity and application of drift-flux model to slip velocity in a liquid–solid circulating fluidized bed. Advanced Powder Technology, 22(1), 77-85.
[43] Zheng, Y. I. N. G. (2004). Radial Particle Profiles in a Liquid‐Solid CFB with Varying Viscosity. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 27(7), 769-776.
[44] Roy, S., & Dudukovic, M. P. (2001). Flow mapping and modeling of liquid− solid risers. Industrial & engineering chemistry research, 40(23), 5440-5454.
[45] Roy, S., Chen, J., Kumar, S. B., Al-Dahhan, M. H., & Duduković, M. P. (1997). Tomographic and Particle Tracking Studies in a Liquid− Solid Riser. Industrial & engineering chemistry research, 36(11), 4666-4669.
[46] Cheng, Y., & Zhu, J. X. (2005). CFD Modelling and Simulation of Hydrodynamics in Liquid‐Solid Circulating Fluidized Beds. The Canadian Journal of Chemical Engineering, 83(2), 177-185.
[47] Roy, S., Sai, P. S. T., & Jayanti, S. (2014). Numerical simulation of the hydrodynamics of a liquid solid circulating fluidized bed. Powder technology, 251, 61-70.
[48] Kalaga, D. V., Reddy, R. K., Joshi, J. B., Dalvi, S. V., & Nandkumar, K. (2012). Liquid phase axial mixing in solid–liquid circulating multistage fluidized bed: CFD modeling and RTD measurements. Chemical Engineering Journal, 191, 475-490.
[49] Shin, K. S., Song, P. S., Lee, C. G., Kang, S. H., Kang, Y., Kim, S. D., & Kim, S. J. (2005). Heat‐transfer coefficient in viscous liquid–solid circulating fluidized beds. AIChE journal, 51(2), 671-677.
[50] Nirmala, G., Muruganandam, L., & Kumar, P. (2015). Solid holdup and circulation rate in a liquid-solid circulating fluidized bed with viscous liquid medium. Brazilian Journal of Chemical Engineering, 32(4), 849-856.
[51] Palani, N., Ramalingam, V., & Seeniraj, R. V. (2008). Effect of various parameters on the solids holdup in a liquid-solid circulating fluidized bed. International Journal of Chemical Reactor Engineering, 6(1).
[52] Roy, S., Kemoun, A., Al‐Dahhan, M. H., & Dudukovic, M. P. (2005). Experimental investigation of the hydrodynamics in a liquid–solid riser. AIChE journal, 51(3), 802-835.