Document Type : Focus Review Article
Author
Smt. Kasturbai Walchand College, Shivaji University, Kolhapur, (MS), India.
Abstract
A large variety of organosulfur compounds have been shown to having diverse biological effects such as anti-oxidant effects, anti-inflammatory properties, inhibition of platelet aggregation, reduction of systolic blood pressure, and reduction of cholesterol. Among these, sulfoxides and sulfones show wide and significant applications as commodity chemical in various fields of chemistry. Therefore, synthesis of sulfoxides as well as sulfones has remained a point of attraction for synthetic organic chemists. Among array of methods used to synthesize the sulfoxides or sulfones, oxidation of sulfide is the most convenient way. This review precises chemoselective methods for the synthesis of the sulfoxides as well as sulfones focusing on oxidative protocols. This review will aid researchers to explore and utilise the mentioned protocols for different organic transformations.
Graphical Abstract
Keywords
Main Subjects
[1] Sahu, S. C. (2002). Dual role of organosulfur compounds in foods: a review. Journal of Environmental Science and Health, Part C, 20(1), 61-76.
[2] Boswell, C. C., & Friesen, D. K. (1993). Elemental sulfur fertilizers and their use on crops and pastures. Fertilizer research, 35(1-2), 127-149.
[3] Lamberth, C. (2004). Sulfur chemistry in crop protection. Journal of Sulfur Chemistry, 25(1), 39-62.
[4] Mussinan, C. J., & Keelan, M. E. (1994). Sulfur compounds in foods: an overview. In ACS symposium series (USA).
[5] Ramadas, K., & Srinivasan, N. (1995). Sodium chlorite-yet another oxidant for thiols to disulphides. Synthetic communications, 25(2), 227-234.
[6] Fisher, H. L. (1953). Elastomers. Industrial & Engineering Chemistry, 45(10), 2188-2198.
[7] Carreño, M. C. (1995). Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chemical reviews, 95(6), 1717-1760.
[8] Colobert, F., Tito, A., Khiar, N., Denni, D., Medina, M. A., Martin-Lomas, M., ... & Solladié, G. (1998). Enantioselective Approach to Polyhydroxylated Compounds Using Chiral Sulfoxides: Synthesis of Enantiomerically Pure myo-Inositol and Pyrrolidine Derivatives. The Journal of Organic Chemistry, 63(24), 8918-8921.
[9] Carreño, M. C., Ribagorda, M., & Posner, G. H. (2002). Titanium‐Promoted Stereoselective Synthesis of Hydroindolones from p‐Quinamines by Domino Conjugate Additions. Angewandte Chemie International Edition, 41(15), 2753-2755.
[10] Patai, S.; Rappoport, H.; Sterling, J. J. The Chemistry of Sulfones and Sulphoxides;Wiley: New York, 1988, 233-378.
[11] Khiar, N., Fernández, I., & Alcudia, F. (1993). C2-Symmetric bis-sulfoxides as chiral ligands in metal catalysed asymmetric diels-alder reactions. Tetrahedron letters, 34(1), 123-126.
[12] Kunieda, N., Nokami, J., & Kinoshita, M. (1976). β-Disulfoxides. II. The Preparation of Some Optically Active β-Disulfoxides. Bulletin of the Chemical Society of Japan, 49(1), 256-259.
[13] Fernandez, I., & Khiar, N. (2003). Recent developments in the synthesis and utilization of chiral sulfoxides. Chemical reviews, 103(9), 3651-3706.
[14] Padmanabhan, S., Lavin, R. C., & Durant, G. J. (2000). Asymmetric synthesis of a neuroprotective and orally active N-methyl-D-aspartate receptor ion-channel blocker, CNS 5788. Tetrahedron: Asymmetry, 11(17), 3455-3457.
[15] Martı́n, S. E., & Rossi, L. I. (2001). An efficient and selective aerobic oxidation of sulfides to sulfoxides catalyzed by Fe (NO3) 3–FeBr3. Tetrahedron Letters, 42(41), 7147-7151.
[16] Afzaletdinova, N. G., Ibatova, E. R., & Murinov, Y. I. (2006). Extraction of iridium (IV) by dihexyl sulfoxide from hydrochloric acid solutions. Russian journal of inorganic chemistry, 51(6), 971-976.
[17] Field, L. (1978). Some developments in synthetic organic sulfur chemistry since 1970. Synthesis, 1978(10), 713-740.
[18] Trost, B. M. (1978). . alpha.-Sulfenylated carbonyl compounds in organic synthesis. Chemical Reviews, 78(4), 363-382.
[19] McTavish, D., Buckley, M. M. T., & Heel, R. C. (1991). Omeprazole. Drugs, 42(1), 138-170.
[20] Spencer, C. M., & Faulds, D. (2000). Esomeprazole. Drugs, 60(2), 321-329.
[21] Salas, M., Ward, A., & Caro, J. (2002). Are proton pump inhibitors the first choice for acute treatment of gastric ulcers? A meta analysis of randomized clinical trials. BMC gastroenterology, 2(1), 17.
[22] Baker, D. E. (2001). Esomeprazole magnesium (Nexium). Reviews in gastroenterological disorders, 1(1), 32-41.
[23] Mahamuni, N. N., Gogate, P. R., & Pandit, A. B. (2007). Selective synthesis of sulfoxides from sulfides using ultrasound. Ultrasonics sonochemistry, 14(2), 135-142.
[24] Khan, M. H., Hasany, S. M., Khan, M. A., & Ali, A. (1994). Extractive Separation of Zirconium from Nitric Acid Solution with Dibutyl Sulfoxide in Xylene. Radiochimica Acta, 65(4), 239-244.
[25] Shukla, J. P., Singh, R. K., Sawant, S. R., & Varadarajan, N. (1993). Liquid-liquid extraction of palladium (II) from nitric acid by bis (2-ethylhexyl) sulphoxide. Analytica chimica acta, 276(1), 181-187.
[26] Simpkins, N. S. (2013). Sulphones in organic synthesis (Vol. 10). Elsevier.
[27] Welz, B. (1999). Atomic absorption spectrometry—pregnant again after 45 years. Spectrochimica Acta Part B: Atomic Spectroscopy, 54(14), 2081-2094.
[28] Fang, S. H., Padmavathi, V., Rao, Y. K., Subbaiah, D. V., Thriveni, P., Geethangili, M., ... & Tzeng, Y. M. (2006). Biological evaluation of sulfone derivatives as anti-inflammatory and tumor cells growth inhibitory agents. International immunopharmacology, 6(11), 1699-1705.
[29] La Regina, G., Coluccia, A., Brancale, A., Piscitelli, F., Gatti, V., Maga, G., ... & Novellino, E. (2011). Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: new cyclic substituents at indole-2-carboxamide. Journal of medicinal chemistry, 54(6), 1587-1598.
[30] Takamuku, S., & Jannasch, P. (2012). Multiblock copolymers containing highly sulfonated poly (arylene sulfone) blocks for proton conducting electrolyte membranes. Macromolecules, 45(16), 6538-6546.
[31] Suzuki, Y., Higashihara, T., Ando, S., & Ueda, M. (2012). Synthesis and characterization of high refractive index and high Abbe’s number poly (thioether sulfone) s based on tricyclo [5.2. 1.02, 6] decane moiety. Macromolecules, 45(8), 3402-3408.
[32] Xu, W., Yang, S., Bhadury, P., He, J., He, M., Gao, L, Hu, D., Song, B. (2011). Synthesis and bioactivity of novel sulfone derivatives containing 2, 4-dichlorophenyl substituted 1, 3, 4-oxadiazole/thiadiazole moiety as chitinase inhibitors. Pesticide biochemistry and physiology, 101(1), 6-15.
[33] Liu, K. G., Robichaud, A. J., Bernotas, R. C., Yan, Y., Lo, J. R., Zhang, M. Y., Hughes, Z. A., Huselton, C., Zhang, G. M., Zhang, J. Y., Kowal, D. M. (2010). 5-Piperazinyl-3-sulfonylindazoles as potent and selective 5-hydroxytryptamine-6 antagonists. Journal of medicinal chemistry, 53(21), 7639-7646.
[34] La Regina, G., Coluccia, A., Brancale, A., Piscitelli, F., Famiglini, V., Cosconati, S., ... & Schols, D. (2012). New nitrogen containing substituents at the indole-2-carboxamide yield high potent and broad spectrum indolylarylsulfone HIV-1 non-nucleoside reverse transcriptase inhibitors. Journal of medicinal chemistry, 55(14), 6634-6638.
[35] Suja, T. D., Divya, K. V. L., Naik, L. V., Kumar, A. R., & Kamal, A. (2016). Copper-catalyzed three-component synthesis of aminonaphthoquinone–sulfonylamidine conjugates and in vitro evaluation of their antiproliferative activity. Bioorganic & medicinal chemistry letters, 26(8), 2072-2076.
[36] Beretta, G. L., Zaffaroni, N., & Varchi, G. (2016). Novel 20 (S)-sulfonylamidine derivatives of camptothecin and the use thereof as a potent antitumor agent: a patent evaluation of WO2015048365 (A1). Expert opinion on therapeutic patents, 26(5), 637-642.
[37] Bansode, P., Jadhav, J., Kurane, R., Choudhari, P., Bhatia, M., Khanapure, S., ... & Rashinkar, G. (2016). Potentially antibreast cancer enamidines via azide–alkyne–amine coupling and their molecular docking studies. RSC Advances, 6(93), 90597-90606.
[38] Chang, S. Y., Bae, S. J., Lee, M. Y., Baek, S. H., Chang, S., & Kim, S. H. (2011). Chemical affinity matrix-based identification of prohibitin as a binding protein to anti-resorptive sulfonyl amidine compounds. Bioorganic & medicinal chemistry letters, 21(2), 727-729.
[39] Heitsch, H., Becker, R. H., Kleemann, H. W., & Wagner, A. (1997). 3N-Methylbiphenylsulfonylurea and-carbamate substituted imidazo [4, 5-b] pyridines. Potent antagonists of the ANG II AT1 receptors. Bioorganic & medicinal chemistry, 5(4), 673-678.
[40] Cornelio, B., Laronze-Cochard, M., Ceruso, M., Ferraroni, M., Rance, G. A., Carta, F., Sapi, J. (2016). 4-Arylbenzenesulfonamides as human carbonic anhydrase Inhibitors (hCAIs): Synthesis by Pd nanocatalyst-mediated Suzuki–Miyaura reaction, enzyme inhibition, and X-ray crystallographic studies. Journal of medicinal chemistry, 59(2), 721-732.
[41] Eldehna, W. M., Al-Ansary, G. H., Bua, S., Nocentini, A., Gratteri, P., Altoukhy, A., ... & Supuran, C. T. (2017). Novel indolin-2-one-based sulfonamides as carbonic anhydrase inhibitors: synthesis, in vitro biological evaluation against carbonic anhydrases isoforms I, II, IV and VII and molecular docking studies. European journal of medicinal chemistry, 127, 521-530.
[42] Iyer, M. R., Cinar, R., Katz, A., Gao, M., Erdelyi, K., Jourdan, T., ... & Kunos, G. (2017). Design, synthesis, and biological evaluation of novel, non-brain-penetrant, hybrid cannabinoid CB1R inverse agonist/inducible nitric oxide synthase (iNOS) inhibitors for the treatment of liver fibrosis. Journal of medicinal chemistry, 60(3), 1126-1141.
[43] Colby, C. E., & Loughlin, C. M. (1887). Ueber die Einwirkung von Schwefligsäureanhydrid auf Benzol. Berichte der deutschen chemischen Gesellschaft, 20(1), 195-198.
[44] Chasar, D. W., & Pratt, T. M. (1978). A direct synthesis of 2-and 4-hydroxydiaryl sulfoxides. Phosphorus and Sulfur and the Related Elements, 5(1), 35-40.
[45] Thomas, C. A. (1941). Anhydrous aluminum chloride in organic chemistry.
[46] Strecker, W. (1910). Einwirkung von Organomagnesiumverbindungen auf Bortrichlorid, Chlorschwefel, sowie auf das Chlorid und die Ester der schwefligen Säure. Berichte der deutschen chemischen Gesellschaft, 43(1), 1131-1136.
[47] Colonna, S., Banfi, S., Fontana, F., & Sommaruga, M. (1985). Asymmetric periodate oxidation of functionalized sulfides catalyzed by bovine serum albumin. The Journal of Organic Chemistry, 50(6), 769-771.
[48] Bickart, P., Carson, F. W., Jacobus, J., Miller, E. G., & Mislow, K. (1968). Thermal racemization of allylic sulfoxides and interconversion of allylic sulfoxides and sulfenates. Mechanism and stereochemistry. Journal of the American Chemical Society, 90(18), 4869-4876.
[49] Wudl, F., & Lee, T. B. (1973). Asymmetric synthesis of chiral sulfoxides. II. Intramolecular oxygen to nitrogen sulfinyl migration. Journal of the American Chemical Society, 95(19), 6349-6358.
[50] Monteiro, H. J., & de Souza, J. P. (1975). A new synthesis of β-keto-phenylsulfoxides. Tetrahedron Letters, 16(11), 921-924.
[51] Palimkar, S. S., Siddiqui, S. A., Daniel, T., Lahoti, R. J., & Srinivasan, K. V. (2003). Ionic liquid-promoted regiospecific friedlander annulation: novel synthesis of quinolines and fused polycyclic quinolines. The Journal of organic chemistry, 68(24), 9371-9378.
[52] Saikia, I., Borah, A. J., & Phukan, P. (2016). Use of bromine and bromo-organic compounds in organic synthesis. Chemical reviews, 116(12), 6837-7042.
[53] Andersen, K. K. (1962). Synthesis of (+)-ethyl p-tolyl sulfoxide from (−)-menthyl (−)-p-toluenrsulfinate. Tetrahedron Letters, 3(3), 93-95.
[54] Folli, U., Iarossi, D., Montanari, F., & Torre, G. (1968). Asymmetric induction and configurational correlations in oxidations at sulphur. Part III. Oxidations of aryl alkyl sulphides to sulphoxides by optically active peroxy-acids. Journal of the Chemical Society C: Organic, 1317-1322.
[55] Andersen, K. K., Gaffield, W., Papanikolaou, N. E., Foley, J. W., & Perkins, R. I. J. (1971). Am Chem. Soc. 1964, 86, 5637-5646.(c) Andersen, K. K. Int. J. Sulfur. Chem, 6, 69-76.
[56] Whitesell, J. K., & Wong, M. S. (1991). Improved method for the preparation of enantiomerically pure sulfinate esters. The Journal of Organic Chemistry, 56(14), 4552-4554.
[57] Whitesell, J. K., & Wong, M. S. (1994). Asymmetric synthesis of chiral sulfinate esters and sulfoxides. Synthesis of sulforaphane. The Journal of Organic Chemistry, 59(3), 597-601.
[58] Resek, J. E., & Meyers, A. I. (1995). Unsaturation of ketones, nitriles and lactams with methyl phenylsulfinate. Tetrahedron letters, 36(39), 7051-7054.
[59] Girodier, L. D., Maignan, C. S., & Rouessac, F. P. (1995). Preparation of optically active 2-(or 3)(p-tolylsulfinyl)-3 (or 2) furyl-or thienylcarboxaldehydes. Tetrahedron: Asymmetry, 6(8), 2045-2052.
[60] Effenberger, F., & Daub, J. (1969). Enoläther, V. Die Reaktion von Thionylchlorid mit Enoläthern. Chemische Berichte, 102(1), 104-111.
[61] Day, J., & Cram, D. J. (1965). Stereochemistry of Nucleophilic Substitution at Sulfur. Stereospecific Synthesis of an Optically Active Sulfilimine1. Journal of the American Chemical Society, 87(19), 4398-4399.
[62] Edwards, D., & Stenlake, J. B. (1954). The oxidation of alkyl sulphides. Journal of the Chemical Society (Resumed), 3272-3274.
[63] Louw, R., Vermeeren, H. P., van Asten, J. J., & Ultée, W. J. (1976). Reaction of sulphides with acyl nitrates; a simple and rapid method for preparing sulphoxides. Journal of the Chemical Society, Chemical Communications, (13), 496-497.
[64] Olah, G. A., Gupta, B. B., & Narang, S. C. (1979). Onium ions. 20. Ambident reactivity of the nitronium ion. Nitration vs. oxidation of heteroorganic (sulfur, selenium, phosphorus, arsenic, antimony) compounds. Preparation and NMR spectroscopic (carbon-13, nitrogen-15, phosphorus-31) study of nitro and nitrito onium ions. Journal of the American Chemical Society, 101(18), 5317-5322.
[65] Nagao, Y., Ochiai, M., Kaneko, K., Maeda, A., Watanabe, K., & Fujita, E. (1977). Novel reactions of organic sulfur and selenium compounds with thallium (III) nitrate: sulfoxide and selenoxide formation and pummerer-like reaction. Tetrahedron Letters, 18(15), 1345-1348.
[66] Tse-Lok, H. O., & Wong, C. M. (1972). Ceric ammonium nitrate oxidation of carboxylic acid hydrazides. Synthesis, 1972(10), 562-563.
[67] Bahrami, K., Khodaei, M. M., & Sheikh Arabi, M. (2010). Tapc-promoted oxidation of sulfides and deoxygenation of sulfoxides. The Journal of organic chemistry, 75(18), 6208-6213.
[68] Iranpoor, N., Firouzabadi, H., & Pourali, A. R. (2002). Dinitrogen tetroxide supported on polyvinylpyrrolidone (PVP–N2O4): a new nitrosating and coupling agent for thiols and a selective oxidant for sulfides and disulfides. Tetrahedron, 58(25), 5179-5184.
[69] Kowalski, P., Mitka, K., Ossowska, K., & Kolarska, Z. (2005). Oxidation of sulfides to sulfoxides. Part 1: Oxidation using halogen derivatives. Tetrahedron, 8(61), 1933-1953.
[70] Leonard, N. J., & Johnson, C. R. (1962). Periodate oxidation of sulfides to sulfoxides. Scope of the reaction. The Journal of Organic Chemistry, 27(1), 282-284.
[71] Huang, J. Y., Li, S. J., & Wang, Y. G. (2006). TEMPO-linked metalloporphyrins as efficient catalysts for selective oxidation of alcohols and sulfides. Tetrahedron letters, 47(32), 5637-5640.
[72] Kim, S. S., & Rajagopal, G. (2003). Efficient and mild oxidation of sulfides to sulfoxides by iodosobenzene catalyzed by Cr (salen) complex. Synthesis, 2003(16), 2461-2463.
[73] Roh, K. R., Kim, K. S., & Kim, Y. H. (1991). Facile oxidation of sulfides to sulfoxides using iodosobenzene and benzeneseleninic acid as a catalyst. Tetrahedron letters, 32(6), 793-796.
[74] Shukla, V. G., Salgaonkar, P. D., & Akamanchi, K. G. (2003). A mild, chemoselective oxidation of sulfides to sulfoxides using o-iodoxybenzoic acid and tetraethylammonium bromide as catalyst. The Journal of organic chemistry, 68(13), 5422-5425.
[75] Bravo, A., Dordi, B., Fontana, F., & Minisci, F. (2001). Oxidation of organic sulfides by Br2 and H2O2. Electrophilic and free-radical processes. The Journal of organic chemistry, 66(9), 3232-3234.
[76] Kar, G., Saikia, A. K., Bora, U., Dehury, S. K., & Chaudhuri, M. K. (2003). Synthesis of cetyltrimethylammonium tribromide (CTMATB) and its application in the selective oxidation of sulfides to sulfoxides. Tetrahedron letters, 44(24), 4503-4505.
[77] áIndrasena Reddy, T., & Varma, R. (1997). Ti-beta-catalysed selective oxidation of sulfides to sulfoxides using urea–hydrogen peroxide adduct. Chemical Communications, (5), 471-472.
[78] Breton, G. W., Fields, J. D., & Kropp, P. J. (1995). Surface-mediated reactions. 5. Oxidation of sulfides, sulfoxides, and alkenes with tert-butyl hydroperoxide. Tetrahedron letters, 36(22), 3825-3828.
[79] Ganem, B., Biloski, A. J., & Heggs, R. P. (1980). A biomimetic heteroatom oxidation. Tetrahedron Letters, 21(8), 689-690.
[80] Imada, Y., Kitagawa, T., Iwata, S., Komiya, N., & Naota, T. (2014). Oxidation of sulfides with hydrogen peroxide catalyzed by synthetic flavin adducts with dendritic bis (acylamino) pyridines. Tetrahedron, 70(2), 495-501.
[81] Vágó, J., & Paál-Lukács, J. (1989). On the stability and decomposition of phenyl (phenylazo) methyl hydroperoxide. Tetrahedron letters, 30(42), 5773-5776.
[82] Lewin, L.(1928) J. Prakt. Chem., VJ, 282.
[83] Sakuraba, H., Natori, K., & Tanaka, Y. (1991). Asymmetric oxidation of alkyl aryl sulfides in crystalline cyclodextrin complexes. The Journal of Organic Chemistry, 56(13), 4124-4129.
[84] Jana, N. K., & Verkade, J. G. (2003). Phase-vanishing methodology for efficient bromination, alkylation, epoxidation, and oxidation reactions of organic substrates. Organic letters, 5(21), 3787-3790.
[85] Arends, I. W. C. E., Sheldon, R. A., & Bäckvall, J. E. (2004). Modern oxidation methods. Wiley-VCH, Weinheim, 83-118.
[86] Jeyakumar, K.; Chand, D. K. (2006). Selective oxidation of sulfides to sulfoxides and sulfones at room temperature using H2O2 and a Mo (VI) salt as catalyst, Tetrahedron Letters, 47(27), 4573-4576.
[87] Al-Hashimi, M., Fisset, E., Sullivan, A. C., & Wilson, J. R. (2006). Selective oxidation of sulfides to sulfoxides using a silica immobilised vanadyl alkyl phosphonate catalyst. Tetrahedron letters, 47(46), 8017-8019.
[88] Wu, X. F. (2012). A general and selective zinc-catalyzed oxidation of sulfides to sulfoxides. Tetrahedron letters, 53(33), 4328-4331.
[89] Su, W., Chen, J., Wu, H., & Jin, C. (2007). A general and efficient method for the selective synthesis of β-hydroxy sulfides and β-hydroxy sulfoxides catalyzed by gallium (III) triflate. The Journal of organic chemistry, 72(12), 4524-4527.
[90] Golchoubian, H., & Hosseinpoor, F. (2007). Effective oxidation of sulfides to sulfoxides with hydrogen peroxide under transition-metal-free conditions. Molecules, 12(3), 304-311.
[91] Prakash, G. S., Shakhmin, A., Glinton, K. E., Rao, S., Mathew, T., & Olah, G. A. (2014). Poly (N-vinylpyrrolidone)–H 2 O 2 and poly (4-vinylpyridine)–H 2 O 2 complexes: solid H 2 O 2 equivalents for selective oxidation of sulfides to sulfoxides and ketones to gem-dihydroperoxides. Green Chemistry, 16(7), 3616-3622.
[92] Hussain, S., Talukdar, D., Bharadwaj, S. K., & Chaudhuri, M. K. (2012). VO2F (dmpz) 2: a new catalyst for selective oxidation of organic sulfides to sulfoxides with H2O2. Tetrahedron Letters, 53(48), 6512-6515.
[93] Kulkarni, A. M., Desai, U. V., Pandit, K. S., Kulkarni, M. A., & Wadgaonkar, P. P. (2014). Nickel ferrite nanoparticles–hydrogen peroxide: a green catalyst-oxidant combination in chemoselective oxidation of thiols to disulfides and sulfides to sulfoxides. RSC Advances, 4(69), 36702-36707.
[94] Ghorbani-Choghamarani, A., Mohammadi, M., Tamoradi, T., & Ghadermazi, M. (2019). Covalent immobilization of Co complex on the surface of SBA-15: Green, novel and efficient catalyst for the oxidation of sulfides and synthesis of polyhydroquinoline derivatives in green condition. Polyhedron, 158, 25-35.
[95] Kumar, A. (2007). HbA/H2O2: an efficient biomimetic catalytic system for the oxidation of sulfides to sulfoxides. Tetrahedron Letters, 48(44), 7857-7860.
[96] Mirzaie, A. (2018). MNPs-supported acidic catalysts in oxidation of sulfides to sulfoxides. Journal of Medicinal and Chemical Sciences, 1(1), 5-8.
[97] Rostami, A., & Akradi, J. (2010). A highly efficient, green, rapid, and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solvent-free conditions. Tetrahedron Letters, 51(27), 3501-3503.
[98] Zolfigol, M. A., Khazaei, A., Safaiee, M., Mokhlesi, M., Rostamian, R., Bagheri, M., ... & Kruger, H. G. (2013). Application of silica vanadic acid as a heterogeneous, selective and highly reusable catalyst for oxidation of sulfides at room temperature. Journal of Molecular Catalysis A: Chemical, 370, 80-86.
[99] Shen, H. M., Zhou, W. J., Ma, X., Wu, H. K., Yu, W. B., Ai, N., ... & She, Y. B. (2015). pH-Dependence of the Aqueous Phase Room Temperature Brønsted Acid-Catalyzed Chemoselective Oxidation of Sulfides with H2O2. Molecules, 20(9), 16709-16722.
[100] Gazdar, M., & Smiles, S. (1908). CLXXXII.—The interaction of hydrogen dioxide and sulphides. Journal of the Chemical Society, Transactions, 93, 1833-1836.
[101] Steinkopf, W., Herold, J., & Stöhr, J. (1920). Über das Thiodiglykolchlorid und einige Abkömmlinge desselben. Berichte der deutschen chemischen Gesellschaft (A and B Series), 53(6), 1007-1012.
[102] Cope, A. C.; Morrison, D. E.; Field, L. J. Am. Chem. Soc. 1950, 72, 59.
[103] Karrer, P., Scheitlin, E., & Siegrist, H. (1950). Über Homologe des Sulforaphans und über ω‐Aminoalkyl‐sulfoxyde. Helvetica Chimica Acta, 33(5), 1237-1245.
[104] Drabowicz, J., & Mikołajczyk, M. (1981). An improved method for oxidation of sulfides to sulfoxides with hydrogen peroxide in methanol. Synthetic Communications, 11(12), 1025-1030.
[105] Xu, W. L., Li, Y. Z., Zhang, Q. S., & Zhu, H. S. (2004). A selective, convenient, and efficient conversion of sulfides to sulfoxides. Synthesis, 2004(02), 227-232.
[106] Hussain, H., Green, I. R., & Ahmed, I. (2013). Journey describing applications of oxone in synthetic chemistry. Chemical reviews, 113(5), 3329-3371.
[107] Greenhalgh, R. P. (1992). Selective oxidation of phenyl sulphides to sulphoxides or sulphones using Oxone® and wet alumina. Synlett, 1992(03), 235-236.
[108] Kropp, P. J., Breton, G. W., Fields, J. D., Tung, J. C., & Loomis, B. R. (2000). Surface-Mediated Reactions. 8. Oxidation of Sulfides and Sulfoxides with tert-butyl Hydroperoxide and OXONE1. Journal of the American Chemical Society, 122(18), 4280-4285.
[109] Yu, B., Liu, A. H., He, L. N., Li, B., Diao, Z. F., & Li, Y. N. (2012). Catalyst-free approach for solvent-dependent selective oxidation of organic sulfides with oxone. Green Chemistry, 14(4), 957-962.
[110] Truce, W. E., Klinger, T. C., Brand, W. W., & Oae, S. (1977). Organic Chemistry of Sulfur. by S. Oae, Plenum Press, New York.
[111] Ueda, M.; Uchiyama, K.; Kano, T.(1984). Synthesis, 4,323.
[112] Graybill, B. M. (1967). Synthesis of aryl sulfones. The Journal of Organic Chemistry, 32(9), 2931-2933.
[113] Bandgar, B. P., & Kasture, S. P. (2001). Zinc-Mediated Fast Sulfonylation of Aromatics. Synthetic communications, 31(7), 1065-1068.
[114] Yang, M., Shen, H., Li, Y., Shen, C., & Zhang, P. (2014). D-Glucosamine as a green ligand for copper catalyzed synthesis of aryl sulfones from aryl halides and sodium sulfinates. RSC Advances, 4(50), 26295-26300.
[115] Nara, S. J., Harjani, J. R., & Salunkhe, M. M. (2001). Friedel− Crafts Sulfonylation in 1-Butyl-3-methylimidazolium chloroaluminate ionic liquids. The Journal of organic chemistry, 66(25), 8616-8620.
[116] Saidi, O., Marafie, J., Ledger, A. E., Liu, P. M., Mahon, M. F., Kociok-Köhn, G., ... & Frost, C. G. (2011). Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. Journal of the American Chemical Society, 133(48), 19298-19301.
[117] Pan, X. J., Gao, J., & Yuan, G. Q. (2015). An efficient electrochemical synthesis of β-keto sulfones from sulfinates and 1, 3-dicarbonyl compounds. Tetrahedron, 71(34), 5525-5530.
[118] Chumachenko, N., & Sampson, P. (2006). Synthesis of β-hydroxy sulfones via opening of hydrophilic epoxides with zinc sulfinates in aqueous media. Tetrahedron, 62(18), 4540-4548.
[119] Murthy, S. N., Madhav, B., Reddy, V. P., Rao, K. R., & Nageswar, Y. V. D. (2009). An approach toward the synthesis of β-hydroxy sulfones on water. Tetrahedron Letters, 50(35), 5009-5011.
[120] Chawla, R., Kapoor, R., Singh, A. K., & Yadav, L. D. S. (2012). A one-pot regioselective synthetic route to vinyl sulfones from terminal epoxides in aqueous media. Green Chemistry, 14(5), 1308-1313.
[121] Jin, S. S., Wang, H., & Guo, H. Y. (2013). Ionic liquid catalyzed one-pot synthesis of novel spiro-2-amino-3-phenylsulfonyl-4H-pyran derivatives. Tetrahedron Letters, 54(19), 2353-2356.
[122] Durst, T. (1969). Stereospecific hydroxyalkylation of chloromethyl phenyl sulfoxide. Journal of the American Chemical Society, 91(4), 1034-1035.
[123] Gokel, G. W., Gerdes, H. M., & Dishong, D. M. (1980). Sulfur heterocycles. 3. Heterogeneous, phase-transfer, and acid-catalyzed potassium permanganate oxidation of sulfides to sulfones and a survey of their carbon-13 nuclear magnetic resonance spectra. The Journal of Organic Chemistry, 45(18), 3634-3639.
[124] Ali, M. H., & Bohnert, G. J. (1998). A facile and selective procedure for oxidation of sulfides to sulfoxides with molecular bromine on hydrated silica gel in dichloromethane. Synthesis, 1998(09), 1238-1240.
[125] Fukuda, N., & Ikemoto, T. (2010). Imide-catalyzed oxidation system: Sulfides to sulfoxides and sulfones. The Journal of organic chemistry, 75(13), 4629-4631.
[126] Irfan, M., Glasnov, T. N., & Kappe, C. O. (2011). Continuous flow ozonolysis in a laboratory scale reactor. Organic letters, 13(5), 984-987.
[127] Schumacher, D. P., Clark, J. E., Murphy, B. L., & Fischer, P. A. (1990). An efficient synthesis of florfenicol. The Journal of Organic Chemistry, 55(18), 5291-5294.
[128] Kaptein, B., van Dooren, T. J., Boesten, W. H., Sonke, T., Duchateau, A. L., Broxterman, Q. B., & Kamphuis, J. (1998). Synthesis of 4-sulfur-substituted (2 S, 3 R)-3-phenylserines by enzymatic resolution. Enantiopure precursors for thiamphenicol and florfenicol. Organic Process Research & Development, 2(1), 10-17.
[129] Harrak, Y., Casula, G., Basset, J., Rosell, G., Plescia, S., Raffa, D., ... & Pujol, M. D. (2010). Synthesis, anti-inflammatory activity, and in vitro antitumor effect of a novel class of cyclooxygenase inhibitors: 4-(Aryloyl) phenyl methyl sulfones. Journal of medicinal chemistry, 53(18), 6560-6571.
[130] Mandal, M., &Chakraborty, D. (2015). Kinetic investigation on the highly efficient and selective oxidation of sulfides to sulfoxides and sulfones with t-BuOOH catalyzed by La 2 O 3. RSC Advances, 5(16), 12111-12122.
[131] Therien, M., Gauthier, J. Y., Leblanc, Y., Leger, S., Perrier, H., Prasit, P., & Wang, Z. (2001). Synthesis of Rofecoxib,(MK 0966, Vioxx® 4-(4′-Methylsulfonylphenyl)-3-Phenyl-2 (5H)-Furanone), a Selective and Orally Active Inhibitor of Cyclooxygenase-2. Synthesis, 2001(12), 1778-1779.
[132] Qian, W., & Pei, L. (2006). Efficient and highly selective oxidation of sulfides to sulfoxides in the presence of an ionic liquid containing hypervalent iodine. Synlett, 2006(05), 0709-0712.
[133] Barton, D. H., Li, W., & Smith, J. A. (1998). Binuclear manganese complexes as catalysts in the selective and efficient oxidation of sulfides to sulfones. Tetrahedron letters, 39(39), 7055-7058.
[134] Xu, L., Cheng, J., & Trudell, M. L. (2003). Chromium (VI) oxide catalyzed oxidation of sulfides to sulfones with periodic acid. The Journal of organic chemistry, 68(13), 5388-5391.
[135] Moghadam, M., Tangestaninejad, S., Mirkhani, V., Mohammadpoor-Baltork, I., & Abbasi-Larki, A. A. (2008). Biomimetic oxidation of sulfides with sodium periodate catalyzed by polystyrene-bound manganese (III) tetrapyridylporphyrin. Applied Catalysis A: General, 349(1-2), 177-181.
[136] Boruah, J. J., Das, S. P., Ankireddy, S. R., Gogoi, S. R., & Islam, N. S. (2013). Merrifield resin supported peroxomolybdenum (VI) compounds: recoverable heterogeneous catalysts for the efficient, selective and mild oxidation of organic sulfides with H 2 O 2. Green Chemistry, 15(10), 2944-2959.
[137] Zhao, W., Yang, C., Cheng, Z., & Zhang, Z. (2016). A reusable catalytic system for sulfide oxidation and epoxidation of allylic alcohols in water catalyzed by poly (dimethyl diallyl) ammonium/polyoxometalate. Green Chemistry, 18(4), 995-998.
[138] Jin, C. K., Yamada, Y., & Uozumi, Y. (2010). Chemoselective Oxidation of Sulfides Promoted by a Tightly Convoluted Polypyridinium Phosphotungstate Catalyst with H 2 O 2. Bulletin of the Korean Chemical Society, 31(3), 547-548.
[139] Alonso, D. A., Nájera, C., & Varea, M. (2002). Simple, economical and environmentally friendly sulfone synthesis. Tetrahedron letters, 43(19), 3459-3461.
[140] Voutyritsa, E., Triandafillidi, I., & Kokotos, C. G. (2017). Green Organocatalytic Oxidation of Sulfides to Sulfoxides and Sulfones. Synthesis, 49(04), 917-924.
[141] Doherty, S., Knight, J. G., Carroll, M. A., Ellison, J. R., Hobson, S. J., Stevens, S., ... & Goodrich, P. (2015). Efficient and selective hydrogen peroxide-mediated oxidation of sulfides in batch and segmented and continuous flow using a peroxometalate-based polymer immobilised ionic liquid phase catalyst. Green Chemistry, 17(3), 1559-1571.
[142] Karmee, S. K., Greiner, L., Kraynov, A., Müller, T. E., Niemeijer, B., & Leitner, W. (2010). Nanoparticle catalysed oxidation of sulfides to sulfones by in situ generated H 2 O 2 in supercritical carbon dioxide/water biphasic medium. Chemical Communications, 46(36), 6705-6707.
[143] Das, S. P., Boruah, J. J., Sharma, N., & Islam, N. S. (2012). New polymer-immobilized peroxotungsten compound as an efficient catalyst for selective and mild oxidation of sulfides by hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 356, 36-45.
[144] Maleki, B., Hemmati, S., Sedrpoushan, A., Ashrafi, S. S., & Veisi, H. (2014). Selective synthesis of sulfoxides and sulfones from sulfides using silica bromide as the heterogeneous promoter and hydrogen peroxide as the terminal oxidant. RSC Advances, 4(76), 40505-40510.
[145] Kirihara, M., Itou, A., Noguchi, T., & Yamamoto, J. (2010). Tantalum carbide or niobium carbide catalyzed oxidation of sulfides with hydrogen peroxide: highly efficient and chemoselective syntheses of sulfoxides and sulfones. Synlett, 2010(10), 1557-1561.
[146] Bahrami, K., Khodaei, M. M., & Sohrabnezhad, S. (2011). Cyanuric chloride as promoter for the oxidation of sulfides and deoxygenation of sulfoxides. Tetrahedron letters, 52(48), 6420-6423.
[147] Hussain, S., Bharadwaj, S. K., Pandey, R., & Chaudhuri, M. K. (2009). Borax‐Catalyzed and pH‐Controlled Selective Oxidation of Organic Sulfides by H2O2: An Environmentally Clean Protocol. European Journal of Organic Chemistry, 2009(20), 3319-3322.
[148] Shaabani, A., & Rezayan, A. H. (2007). Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H2O2. Catalysis Communications, 8(7), 1112-1116.
[149] Al-Maksoud, W., Daniele, S., & Sorokin, A. B. (2008). Practical oxidation of sulfides to sulfones by H 2 O 2 catalysed by titanium catalyst. Green Chemistry, 10(4), 447-451.
[150] Jafari, H., Rostami, A., Ahmad-Jangi, F., & Ghorbani-Choghamarani, A. (2012). Sulfamic Acid–Catalyzed Oxidation of Sulfides to Sulfoxides and Sulfones Using H2O2: Green and Chemoselective Method. Synthetic Communications, 42(21), 3150-3156.
[151] Jereb, M. (2012). Highly atom-economic, catalyst-and solvent-free oxidation of sulfides into sulfones using 30% aqueous H 2 O 2. Green Chemistry, 14(11), 3047-3052.
[152] Ahammed, S., Kundu, D., Siddiqui, M. N., & Ranu, B. C. (2015). Metal and solvent free selective oxidation of sulfides to sulfone using bifunctional ionic liquid [pmim] IO4. Tetrahedron letters, 56(2), 335-337.
[153] Webb, K. S. (1994). A mild, inexpensive and practical oxidation of sulfides. Tetrahedron letters, 35(21), 3457-3460.
[154] Hirano, M., Tomaru, J. I., & Morimoto, T. (1991). A Facile Synthesis of Sulfones by the Oxidation of Various Sulfides with Oxone in Aprotic Solvent in the Presence of “Wet-Montmorillonite”. Chemistry letters, 20(3), 523-524.
[155] Cravotto, G., Garella, D., Carnaroglio, D., Gaudino, E. C., & Rosati, O. (2012). Solvent-free chemoselective oxidation of thioethers and thiophenes by mechanical milling. Chemical Communications, 48(95), 11632-11634.
[156] Kupwade, R. V., Khot, S. S., Lad, U. P., Desai, U. V., & Wadgaonkar, P. P. (2017). Catalyst-free oxidation of sulfides to sulfoxides and diethylamine catalyzed oxidation of sulfides to sulfones using Oxone as an oxidant. Research on Chemical Intermediates, 43(12), 6875-6888.