Scopus     h-index: 24

Document Type : Short Review Article

Author

Master of cellular and molecular science/biochemistry field of study, Islamic Azad University (IAU), Science and Research Branch, Sanandaj, Iran.

Abstract

Diseases resulting from protein accumulations can be described mainly by improper folding and aggregation of endogenous proteins in affected tissues such as the brain or the heart. During misfolding and aggregation, the affected protein often loses its normal function, becomes more resistant to degradation, and often acquires toxic functions that can cause organ damage. Proteins generally require specific three-dimensional conformations in order to be soluble and function correctly in the body. Under stress conditions, normally soluble proteins can undergo structural changes and self-assembly, leading to their aggregation into insoluble deposits, referred to as amyloids. Amyloids from different proteins share several structural properties: they all have a fibrillar morphology and cross-β structure, whereby intermolecular main-chain hydrogen bonding acts as one primary stabilizing interaction. In conclusion, protein aggregation is the process by which misfolded proteins adopt a conformation that causes its polymerization into aggregates and organized fibrils. Many neurodegenerative diseases (amyloidoses) are associated with protein aggregation, though smaller oligomeric forms of the misfolded (amyloidogenic) proteins have been implicated as the causative agent. This study investigates those factors involved in disease and abnormalities arising from protein aggregation one by one. Also, it can be reviewed as a comprehensive glance for the process of protein aggregation whether from a structural or clinical point of view.

Graphical Abstract

Misfolded structures | A brief insight into protein aggregation criteria, which may lead to Proteopathy diseases.

Keywords

Main Subjects

[1].          E. Agorogiannis, G. Agorogiannis, A. Papadimitriou, G. Hadjigeorgiou, Protein misfolding in neurodegenerative diseases. Neuropathol. Appl. Neurobiol., 30(2004), 215-224.
[2].          H. Aiking, Future protein supply. Trends Food Sci. Technol., 22(2011), 112-120.
[3].          S. Amin, G. V. Barnett, J. A. Pathak, C. J. Roberts, P. S. Sarangapani, Protein aggregation, particle formation, characterization & rheology. Curr. Opin. Colloid Interface Sci., 19(2014), 438-449.
[4].          V. L. Anderson, T. F. Ramlall, C. C. Rospigliosi, W. W. Webb, D. Eliezer, Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation. Proc. Natl. Acad. Sci., 107(2010), 18850-18855.
[5].          T. Arakawa, S. N. Timasheff, Preferential interactions of proteins with salts in concentrated solutions. Biochemistry, 21(1982), 6545-6552.
[6].          D. Baker, A surprising simplicity to protein folding. Nature, 405(2000), 39-42.
[7].          J. M. Barral, S. A. Broadley, G. Schaffar, F. U. Hartl, Roles of molecular chaperones in protein misfolding diseases. Paper presented at the Seminars in cell & developmental biology, (2004).
[8].          S. Benjwal, S. Verma, K. H. Röhm, O. Gursky, Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Sci., 15(2006), 635-639.
[9].          A. Berrill, J. Biddlecombe, D. Bracewell, Product quality during manufacture and supply. Peptide and Protein Delivery, (2011), 313-339: Elsevier.
[10].      C. W. Bertoncini, Y.-S. Jung, C. O. Fernandez, W. Hoyer, C. Griesinger, T. M. Jovin, M. Zweckstetter, Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-synuclein. Proc. Natl. Acad. Sci., 102(2005), 1430-1435.
[11].      R. W. Carrell, B. Gooptu, Conformational changes and disease—serpins, prions and Alzheimer's. Curr. Opin. Struct. Biol., 8(1998), 799-809.
[12].      R. W. Carrell, D. A. Lomas, Conformational disease. The Lancet, 350(1997), 134-138.
[13].       R. Carrotta, R. Bauer, R. Waninge, C. Rischel, Conformational characterization of oligomeric intermediates and aggregates in β‐lactoglobulin heat aggregation. Protein Sci., 10(2001), 1312-1318.
[14].      F. Chiti, C. M. Dobson, Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 75(2006), 333-366.
[15].      D. Constatinescu, C. Herrmann, H. Weingärtner, Patterns of protein unfolding and protein aggregation in ionic liquids. Phys. Chem. Chem. Phys., 12(2010), 1756-1763.
[16].      K. A. Conway, J. D. Harper, P. T. Lansbury, Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry, 39(2000), 2552-2563.
[17].      A. D’Souza, J. D. Theis, J. A. Vrana, A. Dogan, Pharmaceutical amyloidosis associated with subcutaneous insulin and enfuvirtide administration. Amyloid, 21(2014), 71-75.
[18].      R. J. Ellis, A. P. Minton, Protein aggregation in crowded environments. Biol. Chem., 387(2006), 485-497.
[19].      A. Es-haghi, A. Ebrahim-Habibi, M. Sabbaghian, M. Nemat-Gorgani, Amyloid-like aggregates formation by bovine apo-carbonic anhydrase in various alcohols: A comparative study. Int. J. Biol. Macromol., 92(2016), 573-580.
[20].      P. Fan, C. Bracken, J. Baum, Structural characterization of monellin in the alcohol-denatured state by NMR: Evidence for. beta.-sheet to. alpha.-helix conversion. Biochemistry, 32(1993), 1573-1582.
[21].      M. Fändrich, Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J. Mol. Biol., 421(2012), 427-440.
[22].      F. Ferrone, [17] Analysis of protein aggregation kinetics. Methods Enzymol., 309(1999), 256-274: Elsevier.
[23].      A. L. Fink, Protein aggregation: folding aggregates, inclusion bodies and amyloid. Folding Des., 3(1998), 9-23.
[24].      A. L. Fink, Chaperone-mediated protein folding. Physiol. Rev., 79(1999), 425-449.
[25].      G. Forloni, N. Angeretti, R. Chiesa, E. Monzani, M. Salmona, O. Bugiani, F. Tagliavini, Neurotoxicity of a prion protein fragment. Nature, 362(1993), 543-546.
[26].      G. Ganguly, S. Chakrabarti, U. Chatterjee, L. Saso, Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des., Dev. Ther., 11(2017), 797.
[27].      D. J. Gelb, E. Oliver, S. Gilman, Diagnostic criteria for Parkinson disease. Arch Neurol., 56(1999), 33-39.
[28].      S. A. Ghadami, R. Khodarahmi, S. Ghobadi, M. Ghasemi, S. Pirmoradi, Amyloid fibril formation by native and modified bovine β-lactoglobulins proceeds through unfolded form of proteins: A comparative study. Biophys. Chem., 159(2011), 311-320.
[29].      H. Gliguem, I. Birlouez-Aragon, Effects of sterilization, packaging, and storage on vitamin C degradation, protein denaturation, and glycation in fortified milks. J. Dairy Sci., 88(2005), 891-899.
[30].      A. L. Goldberg, Protein degradation and protection against misfolded or damaged proteins. Nature, 426(2003), 895-899.
[31].      J. Gsponer, M. Vendruscolo, Theoretical approaches to protein aggregation. Protein Pept. Lett., 13(2006), 287-293.
[32].      S. J. Hamodrakas, Protein aggregation and amyloid fibril formation prediction software from primary sequence: towards controlling the formation of bacterial inclusion bodies. FEBS J., 278(2011), 2428-2435.
[33].      D. Harris, P. Peters, A. Taraboulos, V. Lingappa, S. DeArmond, S. Prusiner, Prion Biology and Diseases. Cold Spring Harbor Laboratory Cold Spring Harbor, (2004).
[34].      F. U. Hartl, Molecular chaperones in cellular protein folding. Nature, 381(1996), 571-580.
[35].      R. D. Hills Jr, C. L. Brooks III, Hydrophobic cooperativity as a mechanism for amyloid nucleation. J. Mol. Biol., 368(2007), 894-901.
[36].      J. Hofrichter, M. Krohn, T. Schumacher, C. Lange, B. Feistel, B. Walbroel, J. Pahnke, Reduced Alzheimer's disease pathology by St. John's Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr. Alzheimer Res., 10(2013), 1057-1069.
[37].      E. T. Jaikaran, A. Clark, Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim. Biophys. Acta Mol. Basis Dis., 1537(2001), 179-203.
[38].      K. A. Jellinger, Multiple system atrophy: an oligodendroglioneural synucleinopathy. J. Alzheimer's Dis., 62(2018), 1141-1179.
[39].      K. A. Josephs, J. L. Holton, M. N. Rossor, H. Braendgaard, T. Ozawa, N. C. Fox, P. Rosa, Neurofilament inclusion body disease: a new proteinopathy? Brain, 126(2003), 2291-2303.
[40].      M. Jucker, Y. Christen, Proteopathic Seeds and Neurodegenerative Diseases, (2013): Springer.
[41].      M. Kastelic, Y. V. Kalyuzhnyi, B. Hribar-Lee, K. A. Dill, V. Vlachy, Protein aggregation in salt solutions. Proc. Natl. Acad. Sci., 112(2015), 6766-6770.
[42].      M. S. Khan, S. Tabrez, S. A. Bhat, N. Rabbani, A. M. Al‐Senaidy, B. Bano, Effect of trifluoroethanol on α‐crystallin: folding, aggregation, amyloid, and cytotoxicity analysis. J. Mol. Recognit., 29(2016), 33-40.
[43].      R. Khurana, V. N. Uversky, L. Nielsen, A. L. Fink, Is Congo red an amyloid-specific dye? J. Biol. Chem., 276(2001), 22715-22721.
[44].       M. C. Kiernan, S. Vucic, B. C. Cheah, M. R. Turner, A. Eisen, O. Hardiman, M. C. Zoing, Amyotrophic lateral sclerosis. The Lancet, 377(2011), 942-955.
[45].      D. Kishore, S. Kundu, A. M. Kayastha, Thermal, chemical and pH induced denaturation of a multimeric β-galactosidase reveals multiple unfolding pathways. PloS one, 7(2012), e50380.
[46].      V. Kumar, N. Dixit, L. L. Zhou, W. Fraunhofer, Impact of short range hydrophobic interactions and long range electrostatic forces on the aggregation kinetics of a monoclonal antibody and a dual-variable domain immunoglobulin at low and high concentrations. Int. J. Pharm., 421(2011), 82-93.
[47].      F. M. LaFerla, K. N. Green, S. Oddo, (2007). Intracellular amyloid-β in Alzheimer's disease. Nat. Rev. Neurosci., 8(2007), 499-509.
[48].      M. Lanthier, R. Behrman, C. Nardinelli, Economic issues with follow-on protein products. Nat. Rev. Drug Discovery, 7(2008), 733-737.
[49].      P. Leandro, C. M. Gomes, Protein misfolding in conformational disorders: rescue of folding defects and chemical chaperoning. Mini Rev. Med. Chem., 8(2008), 901-911.
[50].      R. Li, Z. Wu, Y. Wangb, L. Ding, Y. Wang, Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnol. Rep., 9(2016), 46-52.
[51].      S. A. Lipton, Z. Gu, T. Nakamura, Inflammatory mediators leading to protein misfolding and uncompetitive/fast off‐rate drug therapy for neurodegenerative disorders. Int. Rev. Neurobiol., 82(2007), 1-27.
[52].      A. Lorenzo, M. Yuan, Z. Zhang, P. A. Paganetti, C. Sturchler-Pierrat, M. Staufenbiel, B. A. Yankner, Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease. Nat. Neurosci., 3(2000), 460-464.
[53].      C. Madhavaiah, S. Verma, Self-aggregation of reverse bis peptide conjugate derived from the unstructured region of the prion protein. Chem. Commun., (2004), 638-639.
[54].      G. I. Makhatadze, V. V. Loladze, D. N. Ermolenko, X. Chen, S. T. Thomas, Contribution of surface salt bridges to protein stability: guidelines for protein engineering. J. Mol. Biol., 327(2003), 1135-1148.
[55].      E. Masliah, E. Rockenstein, I. Veinbergs, Y. Sagara, M. Mallory, M. Hashimoto, L. Mucke, β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. Proc. Natl. Acad. Sci., 98(2001), 12245-12250.
[56].      L. Mazzei, N. G. Docherty, W. Manucha, Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones, 20(2015), 893-906.
[57].      D. McGowan, W. van Roon-Mom, H. Holloway, G. Bates, L. Mangiarini, G. Cooper, R. Snell, Amyloid-like inclusions in Huntington’s disease. J. Neurosci., 100(2000), 677-680.
[58].      G. C. Melkani, A. S. Trujillo, R. Ramos, R. Bodmer, S. I. Bernstein, K. Ocorr, Huntington's disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet, 9(2013), e1004024.
[59].      L. A. Munishkina, E. M. Cooper, V. N. Uversky, A. L. Fink, The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J. Mol. Recognit., 17(2004), 456-464.
[60].      H. Naiki, F. Gejyo, [20] Kinetic analysis of amyloid fibril formation. Methods Enzymol., 309(1999), 305-318.
[61].      C. Onwulata, S. Isobe, P. Tomasula, P. Cooke, Properties of whey protein isolates extruded under acidic and alkaline conditions. J. Dairy Sci., 89(2006), 71-81.
[62].      D. Papy-Garcia, M. Christophe, H. Minh Bao, S. Fernando, S. Ludmilla, S. Diaz Julia Elisa, R.-V. Rita, Glycosaminoglycans, protein aggregation and neurodegeneration. Curr. Protein Pept. Sci., 12(2011), 258-268.
[63].      D. L. Parton, J. W. Klingelhoefer, M. S. Sansom, Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. Biophys. J., 101(2011), 691-699.
[64].      T. J. Peters, All about albumin: biochemistry, genetics, and medical applications, (1995): Elsevier.
[65].      J. S. Philo, T. Arakawa, Mechanisms of protein aggregation. Curr. Pharm. Biotechnol., 10(2009), 348-351.
[66].      M. Pievani, N. Filippini, M. P. Van Den Heuvel, S. F. Cappa, G. B. Frisoni, Brain connectivity in neurodegenerative diseases—from phenotype to proteinopathy. Nat. Rev. Neurol., 10(2014), 620.
[67].      R. N. Rambaran, L. C. Serpell, Amyloid fibrils: abnormal protein assembly. Prion, 2(2008), 112-117.
[68].      T. W. Randolph, M. Seefeldt, J. F. Carpenter, High hydrostatic pressure as a tool to study protein aggregation and amyloidosis. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1595(2002), 224-234.
[69].      L. Redecke, M. von Bergen, J. Clos, P. V. Konarev, D. I. Svergun, U. E. Fittschen, E. Mandelkow, Structural characterization of β-sheeted oligomers formed on the pathway of oxidative prion protein aggregation in vitro. J. Struct. Biol., 157(2007), 308-320.
[70].      C. Reitz, C. Brayne, R. Mayeux, Epidemiology of Alzheimer disease. Nat. Rev. Neurol., 7(2011), 137-152.
[71].      N. Rezaei-Ghaleh, A. Ebrahim-Habibi, A. A. Moosavi-Movahedi, M. Nemat-Gorgani, Effect of polyamines on the structure, thermal stability and 2, 2, 2-trifluoroethanol-induced aggregation of α-chymotrypsin. Int. J. Biol. Macromol., 41(2007), 597-604.
[72].      C. J. Roberts, Protein aggregation and its impact on product quality. Curr. Opin. Biotechnol., 30(2014), 211-217.
[73].       M. Rosa, C. J. Roberts, M. A. Rodrigues, Connecting high-temperature and low-temperature protein stability and aggregation. PloS one, 12(2017), e0176748.
[74].      C. A. Ross, M. A. Poirier, Protein aggregation and neurodegenerative disease. Nat. Med., 10(2004), 10-17.
[75].      E. Sahin, A. O. Grillo, M. D. Perkins, C. J. Roberts, Comparative effects of pH and ionic strength on protein–protein interactions, unfolding, and aggregation for IgG1 antibodies. J. Pharm. Sci., 99(2010), 4830-4848.
[76].      J. Santos, V. Iglesias, J. Santos-Suárez, M. Mangiagalli, S. Brocca, I. Pallarès, S. Ventura, PH-dependent aggregation in intrinsically disordered proteins is determined by charge and lipophilicity. Cells, 9(2020), 145.
[77].      C. Scheckel, A. Aguzzi, Prions, prionoids and protein misfolding disorders. Nat. Rev. Genet., 19(2018), 405-418.
[78].      L. C. Serpell, Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta Mol. Basis Dis., 1502(2000), 16-30.
[79].       B. A. Shirley, Protein stability and folding: Theory and practice, 21(1995): Springer.
[80].      S. M. Singh, J. Cabello‐Villegas, R. L. Hutchings, K. M. Mallela, Role of partial protein unfolding in alcohol‐induced protein aggregation. Proteins: Struct., Funct., Bioinf., 78(2010), 2625-2637.
[81].       J. D. Sipe, M. D. Benson, J. N. Buxbaum, S.-i. Ikeda, G. Merlini, M. J. Saraiva, P. Westermark, Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid, 23(2016), 209-213.
[82].      J. D. Sipe, A. S. Cohen, History of the amyloid fibril. J. Struct. Biol., 130(2000), 88-98.
[83].      M. Stefani, C. M. Dobson, Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med., 81(2003), 678-699.
[84].      P. Strop, S. L. Mayo, Contribution of surface salt bridges to protein stability. Biochemistry, 39(2000), 1251-1255.
[85].       R. E. Tanzi, L. Bertram, Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell, 120(2005), 545-555.
[86].      A. Tolkach, U. Kulozik, Reaction kinetic pathway of reversible and irreversible thermal denaturation of beta-lactoglobulin. Le Lait, 87(2007), 301-315.
[87].      J. Turk, Rudolf Virchow--father of cellular pathology. J. R. Soc. Med., 86(1993), 688.
[88].      V. N. Uversky, Mysterious oligomerization of the amyloidogenic proteins. FEBS J., 277(2010), 2940-2953.
[89].      R. Veerhuis, R. Boshuizen, A. Familian, Amyloid associated proteins in Alzheimer's and prion disease. Curr. Drug Targets. CNS Neurol. Disord., 4(2005), 235-248.
[90].       B. A. Vernaglia, J. Huang, E. D. Clark, Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Biomacromolecules, 5(2004), 1362-1370.
[91].      L. C. Walker, C. C. Ibegbu, C. W. Todd, H. L. Robinson, M. Jucker, H. LeVine III, S. Gandy, Emerging prospects for the disease-modifying treatment of Alzheimer's disease. Biochem. Pharmacol., 69(2005), 1001-1008.
[92].      L. C. Walker, H. LeVine 3rd, Proteopathy: the next therapeutic frontier? Curr. Opin. Invest. Drugs, 3(2002), 782.
[93].      L. C. Walker, H. LeVine III, M. P. Mattson, M. Jucker, Inducible proteopathies. Trends Neurosci., 29(2006), 438-443.
[94].    G. Walsh, Biopharmaceutical benchmarks 2010. Nat. Biotechnol., 28(2010), 917-924.