Document Type: Short Review Article

Authors

Department of Engineering, Sari Branch, Islamic Azad University, Sari, Iran

Abstract

With the new structural changes of power system that has emerged in recent years, which makes manufacturing units transmit more and more electrical power from the transmission lines, it is expected that a wider voltage collapse in the power systems happens. In this paper, a new PID-based control method was used that provides a PCC-voltage feedback control to increase reactive power from wind-turbine equipped with a doubly-fed induction generator (DFIG) at high voltage drop. The proposed method is an improved control scheme for voltage collapse, by which a part of the wind energy that causes a network failure is temporarily stored in the rotor energy and the remained energy is kept until DC voltage and rotor current are in the hazardous parts. The purpose of the rotor side controller is to independently determine the stator active and reactive power, which the control of the reactive power using the rotor side converter can cause the stator voltage to remain constant in the desired range. The accuracy and performance of the proposed method were confirmed by simulating a typical power system, in the MATLAB/SIMULINK environment.

Graphical Abstract

Keywords

Main Subjects

[1]     M. Ramamoorty, M. M. B. Narayanan, and S. Parameswaran et al., Transient performance of grounding grids, IEEE Trans. Power Del., 4(4) (1989), 2053–2059

[2]     A. Geri, Behavior of grounding systems excited by high impulse currents: the model and its validation, IEEE Trans. Power Del., 14(3) (1999), 1008–1017

[3]     A. F. Otero, J. Cidras, and J. L. del Alamo, Frequency-dependent grounding system calculation by means of a conventional nodal analysis technique, IEEE Trans. Power Del., vol. 14(3) (1999), 873–878

[4]     A. P. Meliopoulos and M. G. Moharam, Transient analysis of grounding systems, IEEE Trans. Power App. Syst., PAS-102(2) (1983), 2-19

[5]     A. D. Papalexopoulos and A. P. Meliopulos, “Frequency dependent characteristics of grounding systems, IEEE Trans. Power Del., 2(4) (1987), 1073–1081

[6]     R. Velazquez and D. Mukhedkar, Analytical modellingof grounding electrodes transient behavior,”IEEE Trans. Power Apparatus and Systems, 103 (1984), 1314-1322.

[7]     A. Samimi, S. Zarinabadi, AH. Shahbazi Kootenaei, A. Azimi, M. Mirzaei, Kinetic Overview of Catalytic Reforming Units (Fixed and Continuous Reforming), Chemical Methodologies, 4(1) (2020), 852-864

[8]     V. Cooray and N. Theethayi, Pulse propagation along transmission lines in the presence of corona and their implication to lightning return strokes, IEEE Trans. Antennas Propag., 56(7) (2008),  1948–1959

[9]     H. M. Kudyan and C. H. Shih, A nonlinear circuit model for transmission lines in corona, IEEE Trans. Power App. Syst., PAS-100(3) (1981), 1420–1430

[10] M.Mihailescu-Suliciu and I. Suliciu, A rate type constitutive equation for the description of the corona effect, IEEE Trans. Power App. Syst.,  PAS-100(8) (1981), 3681–3685

[11] T. H. Thang, Y. Baba, N. Nagaoka, A. Ametani, J. Takami, S. Okabe, and V. A. Rakov, A simplified model of corona discharge on an overhead wire for FDTD computations, IEEE Trans. Electromagn. Compat., 54(3) (2012), 585–593

[12] A. Bozorgian, S. Zarinabadi, A. Samimi, Optimization of Well Production by Designing a Core pipe in one of the Southwest oil Wells of Iran, Journal of Chemical Reviews, 2(2) (2020), 122-129

[13] T. H. Thang, Y. Baba, N. Nagaoka, A. Ametani, J. Takami, S. Okabe, and V. A. Rakov, FDTD simulation of lightning surges on overhead wires in the presence of corona discharge, IEEE Trans. Electromagn. Compat., 54(6) (2012), 1234–1243

[14] C. de Jesus and M. T. Correia de Barros, Modelling of corona dynamics for surge propagation studies, IEEE Trans. Power Del., 9(3) (1994), 1564–1569

[15] T. Noda, T Ono, H. Matsubara, H. Motoyama, S. Sekioka, and A. Ametani, Charge-voltage curves of surge corona on transmission lines two measurement methods, IEEE Trans. Power Del., 18(1) (2003), 307–314

[16] A. Inoue, Propogation analysis of overvoltage surges with corona based upon charge versus voltage curve, IEEE Trans. Power App. Syst., PAS-104(3) (1985), 655–662

[17] A. Samimi, S. Zarinabadi, AH. Shahbazi Kootenaei, A. Azimi, M. Mirzaei, Corrosion Classification of Pipelines in hydrocracking units  by Data Mining, South African Journal of Chemical Engineering, 31 (2020), 44-50

[18] P. S. Maruvada, D. H. Nguyen, and H. Hamadani-Zadeh, Studies on modeling corona attenuation of dynamic overvoltages, IEEE Trans. Power Del., 4(2) (1989), 1441–1449

[19] X. R. Li, O. P.Malik, and Z. Zhao, A practical mathematical model of corona for calculation of transients on transmission lines, IEEE Trans. Power Del., 4(2) (1989), 1145–1152

[20] R. Davis, R. W. E. Cook, and W. G. Standring, The surge corona discharge, Proc. Inst. Elect. Eng. Monographs, 108 (1961), 230–239

[21] P. S. Maruvada, H. Menemenlis, and R. Malewski, Corona characteristics of conductor bundles under impulse voltages, IEEE Trans. Power App. Syst., vol. PAS-96(1) (1977), 102–115

[22] G.V. Podporkin and A. D. Sivaev, Lightning impulse corona characteristics of conductors and bundles, IEEE Trans. Power Del., 12(4) (1997), 1842–1847

[23] T. Narita and S. Okabe, Propagation characteristics of lightning surge with corona discharge on UHV designed transmission line, (in Japanese) Trans. Inst. Elec. Eng. Jpn., 122-B(2) (2002), 307–313

[24] C. Sandoval, Evaluation of corona and line models in electromagnetic transients simulation, IEEE Transactions on Power Delivery, 6(6) (1991), 334-342

[25] Grcev L, Popov M. On high-frequency circuit equivalents of a vertical ground rod. IEEE Transaction on Power Delivery 2005, 20(2) (2005), 1598–1603.

[26] A. Samimi, S. Zarinabadi, A. Bozorgian, A. Amosoltani, M. Tarkesh, K. Kavousi, Advances of Membrane Technology in Acid Gas Removal in Industries, Progress in Chemical and Biochemical Research, 3 (1) (2020), 46-54

[27] Imece A, Durbak D, Elahi H, et al. Modeling guidelines for fast front transients. IEEE Transaction on Power Delivery 1996, 11(1) (1996), 493–506.

[28] Grcev L. Modeling of grounding electrodes under lightning currents. IEEE Transactions on Electromagnetic Compatibility, 51(3) (2009), 559–571.

[29] J. R. Marti, F. Castellanos, and N. Santiago, Wide-band corona circuit model for transient simulations, IEEE Transactions on Power Systems, 10(4) (1995), 1003-1013

[30] J.T. Hodgkinson, M. Welch, D.R. Spring, Learning the Language of Bacteria. ACS Chem. Biol, 2(11) 2007, 715-17.

[31] A. Jayaraman, T.K. Wood, Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu. Rev. Biomed. Eng, 10 2008, 145-67.

[32] M. Manefield, T.B. Rasmussen, M. Henzter, J.B. Andersen, P. Steinberg, S. Kjelleberg, M. Givskov, Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology, 148(4) 2002, 1119-27.

[33] A. Samimi, Risk Management in Information Technology, Progress in Chemical and Biochemical Research, 3(2) (2020), 130-134

[34] R.P. Ryan, J.M. Dow, Diffusible signals and interspecies communication in bacteria. Microbiology, 154(7) 2008, 1845-58.

[35] C.D. Sifri, Quorum sensing: bacteria talk sense. Clin. Infect. Dis, 47(8) 2008, 1070-76.

[36] P. Williams, K. Winzer, W.C. Chan, M. Camara, Look who’s talking: communication and quorum sensing in the bacterial world. Phil. Trans. R. Soc. Lond. B, 362 2007, 1119–1134.

[37] T. Bjarnsholt, M. Givskov, Quorum sensing inhibitory drugs as next generation antimicrobials: worth the effort? Curr. Infect. Dis. Rep, 10(1) 2008, 22-8.

[38] A. Bozorgian, S. Zarinabadi, A. Samimi, Preparation of Xanthan Magnetic Biocompatible Nano-Composite for Removal of Ni^2+ from Aqueous Solution, Chemical Methodologies, 4 (4) (2020), 477-493

[39] B. Raffa Robert, R. Iannuzzo Joseph, R. Levine Diana, K. Saeid Kamal, C. Schwartz Rachel, T. Sucic Nicholas, D. Terleckyj Oksana, M. Young Jeffrey, Bacterial communication ("quorum sensing") via ligands and receptors: a novel pharmacologic target for the design of antibiotic drugs. J. Pharmacol. Exp. Ther, 312(2) 2005, 417-23.

[40] T.B. Rasmussen, M. Givskov, Quorum-sensing inhibitors as antipathogenic drugs. Int. J. Med. Microbiol, 296 (2-3) 2006, 149-61.

[41] B. Rasmussen Thomas, M. Givskov, Quorum sensing inhibitors: a bargain of effects. Microbiology, 152 (Pt 4) 2006, 895-904.

[42] A. Bozorgian, S. Zarinabadi, A. Samimi, Preparation of Xanthan Magnetic Biocompatible Nano-Composite for Removal of Ni^2+ from Aqueous Solution, Chemical Methodologies, 4 (4) (2020), 477-493

[43] N. Balaban, M. Givskov, T.B. Rasmussen, In Vivo Studies: Inhibiting Biofilm-Associated Bacterial Infections using QSIs. In Control of Biofilm Infections by Signal Manipulation, Balaban, N. Ed. Springer: Berlin, 2 2008, 119-29.

[44] M. Hentzer, M. Givskov, L. Eberl, Quorum sensing in biofilms: Gossip in slime city. Microb. Biofilms, 1 2004, 118-40.

[45] M.R. Parsek, E.P. Greenberg, Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol, 13 (1) 2005, 27-33.

[46] A. Samimi, S. Zarinabadi, A. Bozorgian, A. Amosoltani, M. Tarkesh, K. Kavousi, Advances of Membrane Technology in Acid Gas Removal in Industries, Progress in Chemical and Biochemical Research, 3 (1) (2020), 46-54

[47] A.R. Horswill, P. Stoodley, P.S. Stewart, M.R. Parsek, The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal. Bioanal. Chem, 387 (2) 2007, 371-80.

[48] M. Li, N. Ni, H.T. Chou, C.D. Lu, P.C. Tai, B. Wang, Structure-based discovery and experimental verification of novel Al-2 quorum sensing inhibitors against Vibrio harveyi. Chem Med Chem, 3 (8) 2008, 1242-49.

[49] J.B. Andersen, A. Heydorn, M. Hentzer, L. Eberl, O. Geisenberger, B.B. Christensen, S. Molin, M. Givskov, gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67 2001, 575-585.

[50] W. Galloway, J. Hodgkinson, S. Bowden, M. Welch, D. Spring, Quorum Sensing in Gram-Negative Bacteria: Small-Molecule Modulation of AHL and AI-2 Quorum Sensing Pathways. Chem. Rev. 111 2011, 28–67.

[51] M.G. Kociolek, Quorum-Sensing Inhibitors and Biofilms. Anti-Infective Agents in Medicinal Chemistry, 8 2009, 315-326 315.

[52] R. Smith, B. Iglewski, Pseudomonas aeruginosa quorum-sensing systems and virulence. Current Opinion in Microbiology, 6 2003, 56-60.

[53] M. Abdollahbeigi, Optimizing the Process of Di-Isobutyl Phthalate Production Using Vapor Permeation, DAV International Journal of Science, 4(2) (2015), 47-52

[54] M.J. Choobineh, B. Nasrollahzadeh, M. Abdollahbeigi, Investigation of Contact Resistance Effect on Finned Pipes under Natural and Forced Convection, DAV International Journal of Science, 4(2) (2015), 58-76

[55] B. Nasrollahzadeh, M.J. Choobineh, M. Abdollahbeigi, Investigation of Hydrate Formation Kinetics and Mechanism of Inhibitors Effect, DAV International Journal of Science, 4 (2015), 49-56

[56] M. Abdollahbeigi, M.J. Choobineh, B. Nasrollahzadeh, Nano Catalyst, Operation Mechanism and Their Application in Industry, Australian Journal of International Social Research, 1(5) (2015), 1-6

[57] M. Abdollahbeigi, M.J. Choobineh, B. Nasrollahzadeh, Investigation of Molecular Structure in Gas Hydrate, Science road Journal, 3(12) (2015), 74-79

[58] M.J. Choobineh, M. Abdollahbeigi, B. Nasrollahzadeh, the formation of gas hydrate and the effect of inhibitors on their formation process, Journal of Fundamental Applied Science 8(2S) (2016), 1150-1159

[59] A. Samimi, S. Zarinabadi, AH. Shahbazi Kootenaei, A. Azimi, M. Mirzaei, Optimization of Naphtha Hydro-Threating Unit with Continuous Resuscitation Due to the Optimum Temperature of Octanizer Unit Reactors, advanced journal of chemistry section A , 3(2) (2020), 165-180

[60] D. Ren, M. Givskov, T. Ramussen, Quorum-Sensing Inhibitory Compounds. In Control of Biofilm Infections by Signal Manipulation, Balaban, N. Ed. Springer: Berlin, 2 2008, 51-77.