Document Type: Short Review Article

Authors

1 Department of Analytical chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65178638695, Hamadan, Iran

2 Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran

10.33945/SAMI/JCR.2020.4.2

Abstract

In recent years, nanoparticles have been classified in three categories namely nanocrystals, films, and quantum dots. Due to the various properties of composites in comparison to individual particles, the studies that are related to the understanding and characterization of these materials have gained much importance. Solvated metal atom dispersion (SMAD) is a technique which includes the vaporization of the metal in a high vacuum reactor and the co-deposition of metallic vapor on the freeze reactor walls at liquid nitrogen temperature. An organic solvent is used to stabilize the metal atoms in the reaction, to form a solvation sphere, before they reach the frozen reactor walls. After the reaction, nanoparticles are warming at room temperature to form metal colloids. In this stage, depending on the metal concentration, metal type, organic solvent and delay time to stabilize the colloidal nanoparticles, the nanoparticles aggregation produce in different shapes (spherical, clusters, and fractals). The SMAD technique due to reducing and stabilizing the metal nanoparticles in a polymer matrix at the time of synthesis, avoiding metal agglomeration and oxidizing of metal nanoparticles does not produce salt. There is great concentration on these compounds as they can be used in medicine as antibacterial coatings, due to the biocidal action of Au nanoparticles (AuNps). Undeniably, numerous selective homogeneous catalysts from nanoparticles have been reported; however, the only feature is the ability of the polymer chain to protect and stabilize the metal particles from oxidation, therefore, the penetration of the reagents for the desired catalytic reactions is possible.

Graphical Abstract

Keywords

[1] B. Osovetsky, Natural Nanogold, Nanomineralogy Sector, Mineralogy and Petrography Department, Perm State National Research University, Perm, Russia, Springer Mineralogy, 2017, 11-40.

[2] Alizadeh, S., Madrakian, T., & Bahram, M. (2019). Selective and Sensitive Simultaneous Determination of Mercury and Cadmium based on the Aggregation of PHCA Modified-AuNPs in West Azerbaijan Regional Waters. Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry2(1), 57-72.

[3] Kyzas, G. Z., Bikiaris, D. N., & Lazaridis, N. K. (2008). Low-swelling chitosan derivatives as biosorbents for basic dyes. Langmuir24(9), 4791-4799.

[4] Sztandera, K., Gorzkiewicz, M., & Klajnert-Maculewicz, B. (2018). Gold nanoparticles in cancer treatment. Molecular pharmaceutics16(1), 1-23..

[5] Huang, X., & El-Sayed, M. A. (2010). Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of advanced research1(1), 13-28.

[6] Xia, Y., Xiong, Y., Lim, B., & Skrabalak, S. E. (2009). Shape‐controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?. Angewandte Chemie International Edition48(1), 60-103.

[7] Liang, A., Liu, Q., Wen, G., & Jiang, Z. (2012). The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. TrAC Trends in Analytical Chemistry37, 32-47.

[8] Toderas, F., Baia, M., Maniu, D., & Astilean, S. (2008). Tuning the plasmon resonances of gold nanoparticles by controlling their size and shape. Journal of optoelectronics and advanced materials10(9), 2282-2284.

[9] Link, S., & El-Sayed, M. A. (2003). Optical properties and ultrafast dynamics of metallic nanocrystals. Annual review of physical chemistry54(1), 331-366.

[10] Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy, 681−693.

[11] Murphy, C. J., Gole, A. M., Hunyadi, S. E., Stone, J. W., Sisco, P. N., Alkilany, A., ... & Hankins, P. (2008). Chemical sensing and imaging with metallic nanorods. Chemical Communications, (5), 544-557..

[12] Dulkeith, E., Ringler, M., Klar, T. A., Feldmann, J., Munoz Javier, A., & Parak, W. J. (2005). Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano letters5(4), 585-589.

[13] Anger, P., Bharadwaj, P., & Novotny, L. (2006). Enhancement and quenching of single-molecule fluorescence. Physical review letters96(11), 113002.

[14] Sapsford, K. E., Berti, L., & Medintz, I. L. (2006). Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angewandte Chemie International Edition45(28), 4562-4589..

[15] Xue, C., Kung, C. C., Gao, M., Liu, C. C., Dai, L., Urbas, A., & Li, Q. (2015). Facile fabrication of 3D layer-by-layer graphene-gold nanorod hybrid architecture for hydrogen peroxide based electrochemical biosensor. Sensing and Bio-Sensing Research3, 7-11.

[16] Same, S., Aghanejad, A., Nakhjavani, S. A., Barar, J., & Omidi, Y. (2016). Radiolabeled theranostics: magnetic and gold nanoparticles. BioImpacts: BI6(3), 169.

[17] El-Sayed, M. A. (2001). Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of chemical research34(4), 257-264.

[18] Masters, A., & Bown, S. G. (1992, July). Interstitial laser hyperthermia. In Seminars in surgical oncology (Vol. 8, No. 4, pp. 242-249). New York: John Wiley & Sons, Inc.

[19] Shanmugam, V., Selvakumar, S., & Yeh, C. S. (2014). Near-infrared light-responsive nanomaterials in cancer therapeutics. Chemical Society Reviews43(17), 6254-6287..

[20] Hong, E. J., Choi, D. G., & Shim, M. S. (2016). Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharmaceutica Sinica B6(4), 297-307.

[21] Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International reviews in physical chemistry19(3), 409-453..

[22] Harris, N., Ford, M. J., & Cortie, M. B. (2006). Optimization of plasmonic heating by gold nanospheres and nanoshells. The Journal of Physical Chemistry B110(22), 10701-10707.

[23] Khlebtsov, B. N., Khanadeev, V. A., Maksimova, I. L., Terentyuk, G. S., & Khlebtsov, N. G. (2010). Silver nanocubes and gold nanocages: fabrication and optical and photothermal properties. Nanotechnologies in Russia5(7-8), 454-468.

[24] Link, S., & El-Sayed, M. A. (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, 8410−8426.

[25] Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J., Gou, L., ... & Li, T. (2005). Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, 109, 13857−13870.

[26] Loo, C., Lin, A., Hirsch, L., Lee, M. H., Barton, J., Halas, N., ... & Drezek, R. (2004). Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in cancer research & treatment3(1), 33-40..

[27] Terentyuk, G. S., Maslyakova, G. N., Suleymanova, L. V., Khlebtsov, N. G., Khlebtsov, B. N., Akchurin, G. G., ... & Tuchin, V. V. (2009). Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. Journal of biomedical optics14(2), 021016.

[28] Khlebtsov, B., Melnikov, A., Zharov, V., & Khlebtsov, N. (2006). Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches. Nanotechnology17(5), 1437.

[29] Lapotko, D., Lukianova, E., Potapnev, M., Aleinikova, O., & Oraevsky, A. (2006). Method of laser activated nano-thermolysis for elimination of tumor cells. Cancer letters239(1), 36-45.

[30] Lapotko, D. O., Lukianova-Hleb, E. Y., & Oraevsky, A. A. (2007). Clusterization of nanoparticles during their interaction with living cells, 241−253.

[31] Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced drug delivery reviews60(11), 1307-1315.

[32] Alba-Molina, D., Martín-Romero, M. T., Camacho, L., & Giner-Casares, J. J. (2017). Ion-Mediated Aggregation of Gold Nanoparticles for Light-Induced Heating. Applied Sciences7(9), 916.

[33] Yslas, E. I., Ibarra, L. E., Molina, M. A., Rivarola, C., Barbero, C. A., Bertuzzi, M. L., & Rivarola, V. A. (2015). Polyaniline nanoparticles for near-infrared photothermal destruction of cancer cells. Journal of Nanoparticle Research17(10), 389.

[34] An, Z., & Yamaguchi, M. (2012). Chiral recognition in aggregation of gold nanoparticles grafted with helicenes. Chemical Communications48(59), 7383-7385.

[35] Liu, C. W., Hsieh, Y. T., Huang, C. C., Lin, Z. H., & Chang, H. T. (2008). Detection of mercury (II) based on Hg 2+–DNA complexes inducing the aggregation of gold nanoparticles. Chemical Communications, (19), 2242-2244..

 [36] Ma, Y., & Yung, L. Y. L. (2014). Detection of dissolved CO2 based on the aggregation of gold nanoparticles. Analytical chemistry86(5), 2429-2435.

[37] Dansby-Sparks, R. N., Jin, J., Mechery, S. J., Sampathkumaran, U., Owen, T. W., Yu, B. D., ... & Xue, Z. L. (2010). Fluorescent-dye-doped sol− gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations. Analytical chemistry82(2), 593-600..

 [38] Koch, G. J., Beyon, J. Y., Gibert, F., Barnes, B. W., Ismail, S., Petros, M., ... & Singh, U. N. (2008). Side-line tunable laser transmitter for differential absorption lidar measurements of CO 2: design and application to atmospheric measurements. Applied optics47(7), 944-956..

[39] Walt, D. R., Gabor, G., & Goyet, C. (1993). Multiple-indicator fiber-optic sensor for high-resolution pCO2 sea water measurements. Analytica chimica acta274(1), 47-52.

 [40] Cole, J. J., Caraco, N. F., Kling, G. W., & Kratz, T. K. (1994). Carbon dioxide supersaturation in the surface waters of lakes. Science265(5178), 1568-1570.

 [41] De Gregorio, S., Camarda, M., Longo, M., Cappuzzo, S., Giudice, G., & Gurrieri, S. (2011). Long-term continuous monitoring of the dissolved CO2 performed by using a new device in groundwater of the Mt. Etna (southern Italy). Water research45(9), 3005-3011.

[42] Hanstein, S., de Beer, D., & Felle, H. H. (2001). Miniaturised carbon dioxide sensor designed for measurements within plant leaves. Sensors and Actuators B: Chemical81(1), 107-114.

[43] Descoins, C., Mathlouthi, M., Le Moual, M., & Hennequin, J. (2006). Carbonation monitoring of beverage in a laboratory scale unit with on-line measurement of dissolved CO2. Food Chemistry95(4), 541-553.

[44] Frahm, B., Blank, H. C., Cornand, P., Oelßner, W., Guth, U., Lane, P., ... & Pörtner, R. (2002). Determination of dissolved CO2 concentration and CO2 production rate of mammalian cell suspension culture based on off-gas measurement. Journal of biotechnology99(2), 133-148.

[45] Mills, A., Lepre, A., & Wild, L. (1997). Breath-by-breath measurement of carbon dioxide using a plastic film optical sensor. Sensors and Actuators B: Chemical39(1-3), 419-425..

[46] Jin, W., Jiang, J., Song, Y., & Bai, C. (2012). Real-time monitoring of blood carbon dioxide tension by fluorosensor. Respiratory physiology & neurobiology180(1), 141-146.

[47] Mafuné, F., Kohno, J. Y., Takeda, Y., & Kondow, T. (2001). Dissociation and aggregation of gold nanoparticles under laser irradiation. The Journal of Physical Chemistry B105(38), 9050-9056..

[48] Nam, J., Won, N., Jin, H., Chung, H., & Kim, S. (2009). pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. Journal of the American Chemical Society131(38), 13639-13645.

[49] Sato, K., Hosokawa, K., & Maeda, M. (2003). Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. Journal of the American Chemical Society125(27), 8102-8103..

[50] Scarpettini, A. F., & Bragas, A. V. (2010). Coverage and aggregation of gold nanoparticles on silanized glasses. Langmuir26(20), 15948-15953..

[52] Shamsipur, M., Safavi, A., Mohammadpour, Z., & Ahmadi, R. (2016). Highly selective aggregation assay for visual detection of mercury ion based on competitive binding of sulfur-doped carbon nanodots to gold nanoparticles and mercury ions. Microchimica Acta183(7), 2327-2335..

[53] Thanh, N. T. K., & Rosenzweig, Z. (2002). Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Analytical chemistry74(7), 1624-1628.

[54] Wu, Y., Zhan, S., Wang, F., He, L., Zhi, W., & Zhou, P. (2012). Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic (III) in aqueous solution. Chemical communications48(37), 4459-4461.

[55] Keshvari, F., Bahram, M., & Farhadi, K. (2016). Sensitive and selective colorimetric sensing of acetone based on gold nanoparticles capped with l-cysteine. Journal of the Iranian Chemical Society13(8), 1411-1416..

[56] Pournaghi, A., Keshvari, F., & Bahram, M. (2019). Colorimetric determination of iodine based on highly selective and sensitive anti-aggregation assay. Journal of the Iranian Chemical Society16(1), 143-149.

[57] Keshvari, F., Bahram, M., & Farshid, A. A. (2015). Gold nanoparticles biofunctionalized (grafted) with chiral amino acids: a practical approach to determining the enantiomeric percentage of racemic mixtures. Analytical Methods7(11), 4560-4567.. 

 [58] Mohseni, N., & Bahram, M. (2018). Highly selective and sensitive determination of dopamine in biological samples via tuning the particle size of label-free gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy193, 451-457..

 [59] Mohseni, N., Bahram, M., & Baheri, T. (2017). Chemical nose for discrimination of opioids based on unmodified gold nanoparticles. Sensors and Actuators B: Chemical250, 509-517.

[60] Bahram, M., Alizadeh, S., & Madrakian, T. (2015). Application of silver nanoparticles for simple and rapid spectrophotometric determination of acetaminophen and gentamicin in real samples. Sensor Letters13, 1-7.

[61] Bahram, M., Alizadeh, S., & Madrakian, T. (2017). Highly Selective and Sensitive Simultaneous Determination of Hemoglobin and Folic Acid Based on the Aggregation of PHCA Modified-Gold Nanoparticles Using Partial Least Square. Sensor Letters15, 1-10.

[62]Alizadeh, S. (2018). Simple and rapid Simultane-ously Colorimetric determination of betamethasone and nephazoline based on partial least square using gold nanoparticle probe. Int J Bio-tech & Bioeng4, 1-17.

[63] Bahram, M., Madrakian, T., & Alizadeh, S. (2017). Simultaneous colorimetric determination of morphine and ibuprofen based on the aggregation of gold nanoparticles using partial least square. Journal of pharmaceutical analysis7(6), 411-416.

[64] Alizadeh, S., Moghtader, M., & Aliasgharlou, N. (2019). Rank Annihilation Factor Analysis for Spectrophotometric Study of Morphine Based on Gold Nanoparticle Aggregation Using Multivariate Curve Resolution. Sensor Letters17, 1-7.