Document Type: Short Review Article

Authors

1 Department of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, India

2 Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India

3 Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India

4 Department of Biotechnology, National College, Tribhuvan University, Naya Bazar, Kathmandu, Nepal

Abstract

Ameliorating the sustainable and eco-accommodating routes for the procurable synthesis of nanoparticles (NPs) is a crucial aspect in the area of green nanotechnology. The known conventional routes for the production of NPs are complicated, noxious, expensive and not safer to human and environment. To overcome these threats, natural precursors such as biopolymers, plant, fungi, and bacteria have been used to fabricate the calcium oxide nanoparticles (CaO-NPs). The shape, size, and applications of the CaO-NPs are prominently affected by the reaction parameters under which they are synthesized. Moreover, the CaO-NPs synthesized by green approach have found potential applications in a wide spectrum of areas including, catalysis, bio-ceramics, additive in refractory, biodiesel production, adsorbent, antimicrobial agent, removal of Cr(VI) and trans esterification of oils. This research study discussed various plants and the different plant parts that have been used for the synthesis of CaO-NPs. The protocol, characterization techniques, mechanism, and eco-benign synthesis of the CaO-NPs along with various recent applications were also discussed.

Graphical Abstract

Keywords

[1] Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., ... & Varma, R. S. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chemical reviews, 116(6), 3722-3811.

[2] Matussin, S., Harunsani, M. H., Tan, A. L., & Khan, M. M. (2020). Plant extract-mediated SnO2 nanoparticles: Synthesis and applications. ACS Sustainable Chemistry & Engineering, 8(8), 3040-3054.

[3] Gholamrezaei, S., Ghanbari, M., Amiri, O., Salavati-Niasari, M., & Foong, L. K. (2020). BaMnO3 nanostructures: Simple ultrasonic fabrication and novel catalytic agent toward oxygen evolution of water splitting reaction. Ultrasonics sonochemistry, 61, 104829.

[4] Ghotekar, S. (2019). A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 3(2), 187-200.

[5] Pagar, T., Ghotekar, S., Pagar, K., Pansambal, S., Oza, R. (2019). A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications. Journal of Chemical Reviews, 1(4), 260-270.

[6] Nikam, A., Pagar, T., Ghotekar, S., Pagar, K., Pansambal, S. (2019). A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. Journal of Chemical Reviews, 1(3), 154-163.

[7] Ghotekar, S. (2019). Plant extract mediated biosynthesis of Al2O3 nanoparticles- a review on plant parts involved, characterization and applications. Nanochem Res. 4(2):163-169.

[8] Ghotekar, S., Pansambal, S., Pawar, S. P., Pagar, T., Oza, R., Bangale, S. (2019). Biological activities of biogenically synthesized fluorescent silver nanoparticles using Acanthospermum hispidum leaves extract. SN Applied Sciences, 1(11), 1342.

[9] Aher, Y. B., Jain, G. H., Patil, G. E., Savale, A. R., Ghotekar, S. K., Pore, D. M., Pansambal, S. S.,  & Deshmukh, K. K. (2017). Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against diverse pathogens. International Journal of Molecular and Clinical Microbiology, 7(1), 776-786.

[10] Pagar, K., Ghotekar, S., Pagar, T., Nikam, A., Pansambal, S., Oza, R., Sanap, D., Dabhane, H. (2020). Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations. Asian Journal of Nanosciences and Materials, 3(1), 15-23.

[11] Kamble, D. R., Bangale, S. V., Ghotekar, S. K., Bamane, S. R. (2018). Efficient synthesis of CeVO4 nanoparticles using combustion route and their antibacterial activity. J. Nanostruct. 8(2), 144-151.

[12] Ghanbari, M., Bazarganipour, M., & Salavati-Niasari, M. (2017). Photodegradation and removal of organic dyes using cui nanostructures, green synthesis and characterization. Separation and Purification Technology, 173, 27-36.

[13] Ghotekar, S., Pansambal, S., Pagar, K., Pardeshi, O., Oza, R. (2018), Synthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity. Nanochem. Res. 3(2), 189-196.

[14] Savale, A., Ghotekar, S., Pansambal, S., Pardeshi, O. (2017), Green synthesis of fluorescent CdO nanoparticles using Leucaena leucocephala L. extract and their biological activities. J. Bacteriol. Mycol. Open Access. 5(5), 00148.

[15] Ghanbari, M., Soofivand, F., & Salavati-Niasari, M. (2016). Simple synthesis and characterization of Ag2CdI4/AgI nanocomposite as an effective photocatalyst by co-precipitation method. Journal of Molecular Liquids, 223, 21-28.

[16] Ghotekar, S., Savale, A., Pansambal, S. (2018), Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities. J. Water Environ. Nanotechnol. 3(2), 95-105.

[17] Ghotekar, S. K., Vaidya, P. S., Pande, S. N., Pawar, S. P. (2015), Synthesis of silver nanoparticles by using 3-methyl pyrazol 5-one (chemical reduction method) and its characterizations. Int. J. Multidis. Res. and Deve. 2(5), 419-422.

[18] Ghotekar, S. K., Pande, S. N., Pansambal, S. S., Sanap, D. S., Mahale, K. M., Sonawane, B.(2015),Biosynthesis of silver nanoparticles using unripe fruit extract of Annona reticulata L. and its characterization. World J. Pharm. and Pharm. Sci. 4(11), 1304-1312.

[19] Ghanbari, M., & Salavati-Niasari, M. (2018). Tl4CdI6 nanostructures: facile sonochemical synthesis and photocatalytic activity for removal of organic dyes. Inorganic chemistry, 57(18), 11443-11455.

[20] Pansambal, S., Deshmukh, K., Savale, A., Ghotekar, S., Pardeshi, O., Jain, G., Aher, Y., Pore D.  (2017), Phytosynthesis and biological activities of fluorescent CuO nanoparticles using Acanthospermum hispidum L. extract. J. Nanostruct. 7, 165-174.

[21] Pansambal, S., Ghotekar, S., Shewale, S., Deshmukh, K., Barde, N., Bardapurkar, P. (2019). Efficient synthesis of magnetically separable CoFe2O4@SiO2 nanoparticles and its potent catalytic applications for the synthesis of 5-aryl-1, 2, 4-triazolidine-3-thione derivatives. Journal of Water and Environmental Nanotechnology, 4(3), 174-186.

[22] Bangale, S., Ghotekar, S. (2019), Bio-fabrication of silver nanoparticles using Rosa chinensis L. extract for antibacterial activities. Int. J. Nano Dimens. 10(2), 217-224.

[23] Korde, P., Ghotekar, S., Pagar, T., Pansambal, S., Oza, R., Mane, D. (2020). Plant extract assisted eco-benevolent synthesis of selenium nanoparticles-a review on plant parts involved, characterization and their recent applications. Journal of Chemical Reviews, 2(3), 157-168.

[24] Pansambal, S., Gavande, S., Ghotekar, S., Oza, R., Deshmukh, K. (2017). Green Synthesis of CuO Nanoparticles using Ziziphus Mauritiana L. Extract and Its Characterizations. Int. J. Sci. Res. in Sci. and Tech. 3, 1388-1392.

[25] Pansambal, S., Ghotekar, S., Oza, R., Deshmukh, K. (2019), Biosynthesis of CuO nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves and their catalytic performance for the 5-aryl-1,2,4-triazolidine-3- thione derivatives synthesis. Int. J. Sci. Res. Sci. Tech., 5(4), 122-128.

[26] Whited, R. C., Flaten, C. J., & Walker, W. C. (1973). Exciton thermoreflectance of MgO and CaO. Solid State Communications, 13(11), 1903-1905.

[27] Hu, K., Wang, H., Liu, Y., & Yang, C. (2015). KNO3/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Journal of Industrial and Engineering Chemistry, 28, 334-343.

[28] Alipour, Z., Rezaei, M., & Meshkani, F. (2014). Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. Journal of Industrial and engineering Chemistry, 20(5), 2858-2863.

[29] Ketcong, A., Meechan, W., Naree, T., Seneevong, I., Winitsorn, A., Butnark, S., & Ngamcharussrivichai, C. (2014). Production of fatty acid methyl esters over a limestone-derived heterogeneous catalyst in a fixed-bed reactor. Journal of Industrial and Engineering Chemistry, 20(4), 1665-1671.

[30] Safaei-Ghomi, J., Ghasemzadeh, M. A., & Mehrabi, M. (2013). Calcium oxide nanoparticles catalyzed one-step multicomponent synthesis of highly substituted pyridines in aqueous ethanol media. Scientia Iranica, 20(3), 549-554.

[31] Ayers, R., Hannigan, N., Vollmer, N., & Unuvar, C. (2011). Combustion synthesis of heterogeneous calcium phosphate bioceramics from calcium oxide and phosphate precursors. International Journal of Self-Propagating High-Temperature Synthesis, 20(1), 6-14.

[32] Qiu, G. B., Peng, B., Yue, C. S., Guo, M., & Zhang, M. (2016). Properties of regenerated MgO–CaO refractory bricks: impurity of iron oxide. Ceramics International, 42(2), 2933-2940.

[33] Marinković, D. M., Stanković, M. V., Veličković, A. V., Avramović, J. M., Miladinović, M. R., Stamenković, O. O., ... & Jovanović, D. M. (2016). Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renewable and Sustainable Energy Reviews, 56, 1387-1408.

[34] Ngamcharussrivichai, C., Meechan, W., Ketcong, A., Kangwansaichon, K., & Butnark, S. (2011). Preparation of heterogeneous catalysts from limestone for transesterification of vegetable oils—Effects of binder addition. Journal of Industrial and Engineering Chemistry, 17(3), 587-595.

[35] Oladoja, N. A., Ololade, I. A., Olaseni, S. E., Olatujoye, V. O., Jegede, O. S., & Agunloye, A. O. (2012). Synthesis of nano calcium oxide from a gastropod shell and the performance evaluation for Cr (VI) removal from aqua system. Industrial & engineering chemistry research, 51(2), 639-648.

[36] Osuntokun, J., Onwudiwe, D. C., & Ebenso, E. E. (2018). Aqueous extract of broccoli mediated synthesis of CaO nanoparticles and its application in the photocatalytic degradation of bromocrescol green. IET nanobiotechnology, 12(7), 888-894.

[37] Cai, A., Xu, X., Pan, H., Tao, J., Liu, R., Tang, R., & Cho, K. (2008). Direct synthesis of hollow vaterite nanospheres from amorphous calcium carbonate nanoparticles via phase transformation. The Journal of Physical Chemistry C, 112(30), 11324-11330.

[38] Luz Martinez, S., Romero, R., López, J. C., Romero, A., Sanchez Mendieta, V., & Natividad, R. (2011). Preparation and characterization of CaO nanoparticles/NaX zeolite catalysts for the transesterification of sunflower oil. Industrial & engineering chemistry research, 50(5), 2665-2670.

[39] Feng, B., Liu, W., Li, X., & An, H. (2006). Overcoming the problem of loss-in-capacity of calcium oxide in CO2 capture. Energy & Fuels, 20(6), 2417-2420.

[40] Bharathiraja, B., Sutha, M., Sowndarya, K., Chandran, M., Yuvaraj, D., & Kumar, R. P. (2018). Calcium oxide nanoparticles as an effective filtration aid for purification of vehicle gas exhaust. In Advances in Internal Combustion Engine Research (pp. 181-192). Springer, Singapore.

[41] Wan, Z., & Hameed, B. H. (2011). Transesterification of palm oil to methyl ester on activated carbon supported calcium oxide catalyst. Bioresource technology, 102(3), 2659-2664.

[42] Jagadeesh, D., Prashantha, K., & Shabadi, R. (2017). Star-shaped sucrose-capped CaO nanoparticles from Azadirachta indica: A novel green synthesis. Inorganic and Nano-Metal Chemistry47(5), 708-712.

[43] Ramli, M., Rossani, R. B., Nadia, Y., Darmawan, T. B., & Ismail, Y. S. (2019). Nanoparticle fabrication of calcium oxide (CaO) mediated by the extract of red dragon fruit peels (Hylocereus Polyrhizus) and its application as inorganic–anti-microorganism materials. In IOP Conference Series: Materials Science and Engineering (Vol. 509, No. 1, p. 012090). IOP Publishing.

[44] Butt, A. R., Ejaz, S., Baron, J. C., Ikram, M., & Ali, S. (2015). CaO nanoparticles as a potential drug delivery agent for biomedical applications. Digest Journal of Nanomaterials & Biostructures (DJNB), 10(3).

[45] Hasselgren, G., Olsson, B., & Cvek, M. (1988). Effects of calcium hydroxide and sodium hypochlorite on the dissolution of necrotic porcine muscle tissue. Journal of Endodontics14(3), 125-127.

[46] Gedda, G., Pandey, S., Lin, Y. C., & Wu, H. F. (2015). Antibacterial effect of calcium oxide nano-plates fabricated from shrimp shells. Green Chemistry17(6), 3276-3280.

[47] Roy, A., & Bhattacharya, J. (2011). Microwave-assisted synthesis and characterization of CaO nanoparticles. International Journal of Nanoscience10(03), 413-418.

[48] Sadeghi, M., & Husseini, M. H. (2013). A novel method for the synthesis of CaO nanoparticle for the decomposition of sulfurous pollutant. Journal of Applied Chemical Research7(4), 39-49.

[49] Tang, Z. X., Yu, Z., Zhang, Z. L., Zhang, X. Y., Pan, Q. Q., & Shi, L. E. (2013). Sonication-assisted preparation of CaO nanoparticles for antibacterial agents. Química Nova, 36(7), 933-936.

[50] Ikoma, T., Zhang, Q., Saito, F., Akiyama, K., Tero-Kubota, S., & Kato, T. (2001). Radicals in the mechanochemical dechlorination of hazardous organochlorine compounds using CaO nanoparticles. Bulletin of the Chemical Society of Japan74(12), 2303-2309.

[51] Mirghiasi, Z., Bakhtiari, F., Darezereshki, E., & Esmaeilzadeh, E. (2014). Preparation and characterization of CaO nanoparticles from Ca (OH) 2 by direct thermal decomposition method. Journal of industrial and Engineering chemistry20(1), 113-117.

[52] Bhavya, C., Yogendra, K., & Mahadevan, K. M. (2015). A study on the synthesis, characterization and photocatalytic activity of CaO nanoparticle against some selected azo dyes. Indian Journal of Applied Research5(6), 361-365.

[53] Huber, M., Stark, W. J., Loher, S., Maciejewski, M., Krumeich, F., & Baiker, A. (2005). Flame synthesis of calcium carbonate nanoparticles. Chemical communications, (5), 648-650.

[54] Habte, L., Shiferaw, N., Mulatu, D., Thenepalli, T., Chilakala, R., & Ahn, J. W. (2019). Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability, 11(11), 3196.

[55] Veeralekshmi, R., & Saraswathi, N. (2019). Study of Calcium Oxide Nanoparticles Synthesized by Solvothermal Method. Research & Reviews: Journal of Physics, 8(3), 14-19.

[56] Amin Alavi, M., & Morsali, A. (2010). Ultrasonic-assisted synthesis of Ca (OH) 2 and CaO nanostructures. Journal of experimental nanoscience5(2), 93-105.

[57] Marquis, G., Ramasamy, B., Banwarilal, S., & Munusamy, A. P. (2016). Evaluation of antibacterial activity of plant mediated CaO nanoparticles using Cissus quadrangularis extract. Journal of Photochemistry and Photobiology B: Biology155, 28-33.

[58] Pasupathy, S., & Rajamanickam, M. (2019). Synthesis of pure and bio modified calcium oxide (CaO) nanoparticles using waste chicken egg shells and evaluation of its antibacterial activity. International Journal of Pharmaceutical Sciences and Research, 10(10), 4731-4737.

[59] Ijaz, U., Bhatti, I. A., Mirza, S., & Ashar, A. (2017). Characterization and evaluation of antibacterial activity of plant mediated calcium oxide (CaO) nanoparticles by employing Mentha pipertia extract. Materials Research Express4(10), 105402.

[60] Gurav, V. L., Samant, R. A., Manjare, S. B., Patil, U. K., Solkar, S. R., & Moghe, S. S. (2020). Biosynthesis of calcium oxide nanoparticles using Ocimum sanctum (Tulsi) leaf extracts and screening its antimicrobial activity. Asian Journal of Nanoscience and Materials3(2), 115-120.

[61] Ramola, B., Joshi, N. C., Ramola, M., Chhabra, J., & Singh, A. (2019). Green Synthesis, Characterisations and Antimicrobial Activities of CaO Nanoparticles. Oriental Journal of Chemistry35(3), 1154-1157.

[62] Anantharaman, A., Ramalakshmi, S., & George, M. (2016). Green synthesis of calcium oxide nanoparticles and its applications. Int. J. Eng. Res. Appl6(10), 27-31.

[63] Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature nanotechnology6(9), 534-534.