Scopus     h-index: 24

Document Type : Short Review Article

Authors

Department of Power Mechanical Techniques, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq

Abstract

Diffusion coefficient (D) and radiuses of inorganic charge ions (R) in different environments is of importance in scientific fields, explaining certain features of ions. D values were obtained using the Einstein-Smoluchowski equation depending on limiting molar conductivity (λo) of inorganic charge ions. Inorganic ions have D values at the range of 1−3×10−9 m2.s-1,except hydroxyl and hydrogen ion (5.2×10−9 and 9.1×10−9 m2.s-1, respectively). The hydrodynamic radius R for diffusing ions was calculated using the Stokes–Einstein equation based on D values. Inorganic ionshaveR, values at the range of 1−3×10−10 m, except hydroxyl and hydrogen ion (R=0.47×10−10 and 0.27×10−10 m, respectively).

Graphical Abstract

Estimation of the Diffusion Coefficient and Hydrodynamic Radius (Stokes Radius) for Inorganic Ions in Solution Depending on Molar Conductivity as Electro-Analytical Technique-A Review

Keywords

[1] Kariuki, S., & Dewald, H. D. (1996). Evaluation of diffusion coefficients of metallic ions in aqueous solutions. Electroanalysis8(4), 307-313.
[2] Chintapalli, M., Timachova, K., Olson, K. R., Mecham, S. J., Devaux, D., DeSimone, J. M., & Balsara, N. P. (2016). Relationship between conductivity, ion diffusion, and transference number in perfluoropolyether electrolytes. Macromolecules49(9), 3508-3515.
[3] Gamboa-Adelco, M. E., Gale, R. J. (2001). A Guide to problems in modern electrochemistry.  1st ed., Springer Science + Business media, New York, 155.
[4] Kreysa, G., Ota, KI & Savinell, R. F. (2014). Encyclopedia of Applied Electrochemistry. Springer-Verlag New York, USA, 1st ed., 260.
[5] Coury, L. (1999). Conductance measurements part 1: Theory. Current Separations, 18 (3), 91-96.
[6] Otterson, D. W. (2015). Tech talk: (10) Electrolytic conductivity measurement basics. Measurement and control, 48 (8), 239–241.
[7] Csoka, B., & Nagy, G. (2004). Determination of diffusion coefficient in gel and in aqueous solutions using scanning electrochemical microscopy. Journal of biochemical and biophysical methods61(1-2), 57-67.
[8] Kantzas, A., Bryan, J., & Taheri, S. (2012). Fundamentals of fluid flow in porous media. Pore size distribution.
[9] Gilbert, H. F. (2000). Basic concepts in biochemistry: a students survival guide. McGraw-Hill Health Professions Division.
[10] Lindsay, S. (2010). Introduction to nanoscience. Oxford University Press.
[11] Barthel, J., & Jaenicke, R. (1982). BE Conway: Ionic Hydration in Chemistry and Biophysics.—Vol. 12 aus: Studies in Physical and Theoretical Chemistry. Elsevier Scientific Publishing Company, Amsterdam and New York 1981. Berichte der Bunsengesellschaft für physikalische Chemie86(3), 264-264.
[12] Tansel, B. (2012). Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Separation and purification technology86, 119-126.
[13] Richards, L. A., Schäfer, A. I., Richards, B. S., & Corry, B. (2012). The importance of dehydration in determining ion transport in narrow pores. Small8(11), 1701-1709..
[14] Scharf C. (2014). Measurement of the Drift Velocities of Electrons and Holes in High-Ohmic Silicon. Master-Arbeit.  Fachbereich Physik: Hamburg University, Germany.
Scharf, C., & Klanner, R. (2015). Measurement of the drift velocities of electrons and holes in high-ohmic< 100> silicon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment799, 81-89.
[15] Martínez, L. (2018). Measuring the conductivity of very dilute electrolyte solutions, drop by drop. Quimica Nova41(7), 814-817.
[16] Kadhim, M. J. (2019). The effect of sodium chloride on-ion association of lysine and arginine ionizable side chains amino acids with dehydro-l-ascorbic acid in aqueous solution at different temperatures. Iraqi Journal of Science, 60 (7), 1412-1422.
[17] Poklonski, N. A., Vyrko, S. A., Kovalev, A. I., & Dzeraviaha, A. N. (2018). Drift-diffusion model of hole migration in diamond crystals via states of valence and acceptor bands. Journal of Physics Communications2(1), 015013.
[18] Lide, D. R. (2004). Handbook of chemistry and physics. CRC press, NewYork, USA, 84th ed., 930-933.
[19] Atkins, P.  & Paula, J. (2009). Elements of physical chemistry. W. H. Freeman and Company, USA, 5th ed., 197-199.
[20] Mauerhofer, E., Zhernosekov, K. P., & Rösch, F. (2003). Limiting transport properties of lanthanide and actinide ions in pure water. Radiochimica Acta91(8), 473-478.
[21] Bulavin, L.A., Zhyganiuk, I.V. Malomuzh, M.P. & Pankratov, K.M. (2012). Specific features of motion of cations and anions in electrolyte solutions. Ukr. J. Phys., 56 (9), 893-901.
[22] Heyrovska, R. (1989). Effective radii of alkali halide ions in aqueous solutions, crystals and in the gas phase and the interpretation of stokes radii. Chemical physics letters163(2-3), 207-211.
[23] Hussain, A. A., Abashar, M. E. E., & Al-Mutaz, I. S. (2006). Effect of ion sizes on separation characteristics of nanofiltration membrane systems. Journal of King Saud University-Engineering Sciences19(1), 1-18.
[24] Pau, P. C. F., Berg, J. O., & McMillan, W. G. (1990). Application of Stokes' law to ions in aqueous solution. Journal of Physical Chemistry94(6), 2671-2679..
[25] Wei, Y. Z., Chiang, P., & Sridhar, S. (1992). Ion size effects on the dynamic and static dielectric properties of aqueous alkali solutions. The Journal of chemical physics96(6), 4569-4573..
[26] Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography32(5), 751-767.
[27] Kadhim, M. J. (2019). The effect of sodium chloride on thermodynamic parameters of ion association for cysteine and methionine with L-ascorbic acid in aqueous solution at different temperature. IOP Conf. Series: Materials Science and Engineering, 518 (062010), 1-11.
[28] Chizhik, V. I., Egorov, A. V., Pavlova, M. S., Egorova, M. I., & Donets, A. V. (2016). Structure of hydration shell of calcium cation by NMR relaxation, Car-Parrinello molecular dynamics and quantum-chemical calculations. Journal of Molecular Liquids224, 730-736.
[29] Bock, C. W., Markham, G. D., Katz, A. K., & Glusker, J. P. (2006). The arrangement of first-and second-shell water molecules around metal ions: effects of charge and size. Theoretical Chemistry Accounts115(2-3), 100-112.
[30] Plumridge, T. H., Steel, G., & Waigh, R. D. (2000). Geometry-based simulation of the hydration of small molecules. PhysChemComm3(8), 36-41.
[31] Mason, P. E., Cruickshank, J. M., Neilson, G. W., & Buchanan, P. (2003). Neutron scattering studies on the hydration of phosphate ions in aqueous solutions of K 3 PO 4, K 2 HPO 4 and KH 2 PO 4. Physical chemistry chemical physics5(20), 4686-4690
[32] Miller, R. L., Bradford, W. L., & Peters, N. E. (1988). Specific conductance: theoretical considerations and application to analytical quality control (Vol. 142). US Government Printing Office.