Document Type: Short Review Article

Authors

1 Department of Chemistry, College of Science, Al-Nahrain University, Al-Jaderia, Baghdad, Iraq

2 Department of Physics, College of Science, University of Anbar, Ramadi, Iraq

10.33945/SAMI/JCR.2020.3.2

Abstract

Artificial polymer materials with several biomimetic functions with molecular identification competence, activity of catalytic and incentives-reactive functions are the definition of molecularly imprinted polymers (MIPs). Molecularly imprinting polymers can be formulated by forming complexes, the template molecule (its derivative or otherwise target molecule) and a functional monomer that also interacts non-covalently and covalently with the molecule of the template controlled by co-polymerization when a cross-linker is existent. The molecule of template is isolated, leave-taking at the back of schedule tie hollows harmonizing in shape, size, and functional set assemblage to the molecule of template, following the polymerization. There are several factors that should be studied in combination of MIP as these factors may affect the properties, morphology, and usages of the polymer. In synthesis method, the choice of chemicals has become the imperative influence in fabricating the effectual functional MIPs. The aim of this paper was to review previous studied through which the best properties can be obtained to prepare the molecularly imprinting polymers with ion selective electrodes for the determination of several types of drugs.

Graphical Abstract

Keywords

[1] Peper, S., & Gonczy, C. (2011). Potentiometric Response Characteristics of Membrane-Based Cs. International Journal of Electrochemistry2011, 276896.

[2] Janata, J. (2010). Principles of chemical sensors. Springer Science & Business Media.

[3] Canfarotta, F.,Czulak, J.,Guerreiro, A.,Cruz, A.G.,Piletsky, S.,Bergdahl, G.F.,HedstrÖm, M., & Mattiasson, B., (2018). A novel capacitive sensor based on molecularly imprinted nanoparticles as recognition elements. Biosensors and Bioelectronics,120,108-114.

[4] Takeda, Sh.,Yagi, H.,Mizuguchi, S.,Funahashi, H.,Shiigi, H.,Nagaoka, T.,(2008). A Highly Sensitive Amperometric Adenosine Triphosphate Sensor Based on Molecularly Imprinted Overoxidized Polypyrrole. J. Flow Injection Anal. 25(1),77–79.

[5] Drusová, S., Bakx, W., Wexler, A. D., & Offerhaus, H. L. (2019). Possibilities for Groundwater Flow Sensing with Fiber Bragg Grating Sensors. Sensors19(7), 1730.

[6] Huang, Y., Kormakov, S., He, X., Gao, X., Zheng, X., Liu, Y., ... & Wu, D. (2019). Conductive polymer composites from renewable resources: an overview of preparation, properties, and applications. Polymers11(2), 187.

[7] Wloch, M., & Datta, J.,(2019). Chapter Two - Synthesis and polymerisation techniques of molecularly imprinted polymers. Comprehensive Analytical Chemistry.86, 17-40.

[8] Takeuchi T., Sunayama H. (2014) Molecularly Imprinted Polymers. In: Kobayashi S., Müllen K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg.

[9] Abass, A. M., & Ahmed, A. (2017). Synthesis and Application of Trimethoprim Selective Electrodes. RJLBPCS3(2), 146-156.

[10] Abass, A. M. (2017). Synthesis New Liquid Selective Electrodes of Ciprofloxacin Hydrochloride for Determination Ciprofloxacin in Pure form and Pharmaceuticals Preparation. Baghdad Science Journal14(4), 787-792.

[11] Abass, A. M. (2018). Preparation and Application of Tetracycline Hydrochloride Liquid membrane Electrodes. Al-Nahrain Journal of Science21(2), 73-80.

[12] Gao, R., Kong, X., Wang, X., He, X., Chen, L., & Zhang, Y. (2011). Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core–shell magnetic nanoparticles for the recognition and enrichment of protein. Journal of Materials Chemistry21(44), 17863-17871.

[13] Yoshikawa, M., Tharpa, K., & Dima, S. O. (2016). Molecularly imprinted membranes: Past, present, and future. Chemical reviews116(19), 11500-11528.

[14] Li, S., Ge, Y., Piletsky, S. A., & Lunec, J. (Eds.). (2012). Molecularly imprinted sensors: overview and applications. Elsevier.

[15] Guo, Z., Florea, A., Jiang, M., Mei, Y., Zhang, W., Zhang, A., ... & Jaffrezic-Renault, N. (2016). Molecularly imprinted polymer/metal organic framework based chemical sensors. Coatings6(4), 42.

[16] Blanco-López, M. C., Lobo-Castanon, M. J., Miranda-Ordieres, A. J., & Tunon-Blanco, P. (2004). Electrochemical sensors based on molecularly imprinted polymers. TrAC Trends in Analytical Chemistry23(1), 36-48.

[17] Piletsky, S. A., & Turner, A. P. (2002). Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis14(5), 317-323.

[18] Zhang, H., Yao, R., Wang, N., Liang, R., & Qin, W. (2018). Soluble molecularly imprinted polymer-based potentiometric sensor for determination of bisphenol AF. Analytical chemistry90(1), 657-662.

[19] Olcer, Y. A., Demirkurt, M., Demir, M. M., & Eroglu, A. E. (2017). Development of molecularly imprinted polymers (MIPs) as a solid phase extraction (SPE) sorbent for the determination of ibuprofen in water. RSC advances7(50), 31441-31447.

[20] Chen, L., Wang, X., Lu, W., Wu, X., & Li, J. (2016). Molecular imprinting: perspectives and applications. Chemical Society Reviews45(8), 2137-2211.

[21] Refaat, D., Aggour, M. G., Farghali, A. A., Mahajan, R., Wiklander, J. G., Nicholls, I. A., & Piletsky, S. A. (2019). Strategies for Molecular Imprinting and the Evolution of MIP Nanoparticles as Plastic Antibodies-Synthesis and Applications. International Journal of Molecular Sciences20(24), 6304.

[22] Boysen, R. I., Schwarz, L. J., Nicolau, D. V., & Hearn, M. T. (2017). Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. Journal of separation science40(1), 314-335.

[23] Gärtner, C., Ungerböck, B., Schulz, I., Jahn, T., Mosig, A., Mayr, T., & Becker, H. (2015, May). Sensor enhanced microfluidic devices for cell based assays and organs on chip. In Smart Biomedical and Physiological Sensor Technology XII (Vol. 9487, p. 948704). International Society for Optics and Photonics.

[24] Correia, R., James, S., Lee, S. W., Morgan, S. P., & Korposh, S. (2018). Biomedical application of optical fibre sensors. Journal of Optics20(7), 073003.

[25] Giouroudi, I., & Hristoforou, E. (2018). Perspective: Magnetoresistive sensors for biomedicine. Journal of Applied Physics124(3), 030902.

[26] Cinti, S., Moscone, D., & Arduini, F. (2019). Preparation of paper-based devices for reagentless electrochemical (bio) sensor strips. Nature protocols14(8), 2437-2451.

[27] Zaidi, S. A. (2020). Molecular imprinting: A useful approach for drug delivery. Materials Science for Energy Technologies3, 72-77.

[28] Kamel, A. H., Mohammad, S. G., Awwad, N. S., & Mohammed, Y. Y. (2019). Survey on the Integration of Molecularly Imprinted Polymers as Artificial Receptors in Potentiometric Transducers for pharmaceutical Drugs. Int. J. Electrochem. Sci14, 2085-2124.

[29] Ahmad, O. S., Bedwell, T. S., Esen, C., Garcia-Cruz, A., & Piletsky, S. A. (2019). Molecularly imprinted polymers in electrochemical and optical sensors. Trends in biotechnology37(3), 294-309.

[30] Moro, G., Cristofori, D., Bottari, F., Cattaruzza, E., De Wael, K., & Moretto, L. M. (2019). Redesigning an Electrochemical MIP Sensor for PFOS: Practicalities and Pitfalls. Sensors19(20), 4433.

[31] Adumitrăchioaie, A., Tertiș, M., Cernat, A., Săndulescu, R., & Cristea, C. (2018). Electrochemical methods based on molecularly imprinted polymers for drug detection. A review. Int. J. Electrochem. Sci13, 2556-2576.

[32] Mahmoudi S., Rashedi H.,Faridbod F.,(2018). A Molecularly Imprinted Polymer (MIP)-based Biomimetic Potentiometric sensing device for the analysis of Clarithromycin. Anal. Bioanal. Electrochem.,10(12), 1654-1667.

[33] Selvolini, G., & Marrazza, G. (2017). MIP-based sensors: Promising new tools for cancer biomarker determination. Sensors17(4), 718.

[34] Al-Mustafa, J. I., Abu-Dalo, M. A., & Nassory, N. S. (2014). Liquid selective electrodes for dextromethorphan hydrobromide based on a molecularly imprinted polymer in PVC matrix membrane. Int. J. Electrochem. Sci9(1), 292-303.

[35] Rebelo, T. S., Almeida, S. A., Guerreiro, J. R. L., Montenegro, M. C. B., & Sales, M. G. F. (2011). Trimethoprim-selective electrodes with molecularly imprinted polymers acting as ionophores and potentiometric transduction on graphite solid-contact. Microchemical Journal98(1), 21-28.

[36] Arvand, M., &  Hashemi, M.,(2012). Synthesis by Precipitation Polymerization of a Molecularly Imprinted Polymer Membrane for the Potentiometric Determination of Sertraline in Tablets and Biological Fluids. J. Braz. Chem. Soc.,23(3), 392-402.

[37] Oliveira, H. M., Moreira, F. T., & Sales, M. G. F. (2011). Ciprofloxacin-imprinted polymeric receptors as ionophores for potentiometric transduction. Electrochimica Acta56(5), 2017-2023.

[38] Bangaleh, Z., Sadeghi, H.B., Ebrahimi, S.A., &Najafizadeh, P., (2019). A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer. Iranian Journal of Pharmaceutical Research 18( 1), 61-71. 

[39] Biñas, F. G., & Sevilla, F. (2014). Molecularly imprinted potentiometric sensor for surfactant based on electrosynthesized polyaniline. Acta Manilana62, 61-67.

[40] Radi, A. E., Wahdan, T., & El-Basiony, A. (2019). Electrochemical Sensors Based on Molecularly Imprinted Polymers for Pharmaceuticals Analysis. Current Analytical Chemistry15(3), 219-239.

[41] Mirzajani, R., & Arefiyan, E. (2019). Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples. Journal of the Brazilian Chemical Society30(9), 1874-1886.

[42] Babanejad, M ., Tehrani, M. S., Mafakheri,  M., & Sardari, S.,(2016). Potentiometric Determination of Clonazepam Using Carbon Paste Electrode Based on Molecular Imprinted Polymer (MIP) in Solution and in a Biological Fluid Model. Pharm Anal Acta , 7(7), 2.

[43] Abdulla, N. I., & Yaseen, H. M. (2015). Potentiometric Transducers for the Selective Recognition of Risperidone Based on Molecularly Imprinted Polymer. Iraqi Journal of Pharmaceutical Sciences24(2), 30-40.

[44] Hussein, L. A. (2017). Application of membrane-selective electrodes for the determination of Tiemonium methylsulphate. Bulletin of Faculty of Pharmacy, Cairo University55(1), 141-146.

[45] Guerreiro, J. R. L., Sales, M. G. F., Moreira, F. T., & Rebelo, T. S. (2011). Selective recognition in potentiometric transduction of amoxicillin by molecularly imprinted materials. European Food Research and Technology232(1), 39-50.

[46] Rong-Ning,  L., Qi, G.,  & Wei,Q.,(2012). Potentiometric Sensor Based on Molecularly Imprinted Polymers for Rapid Determination of Clenbuterol in Pig Urine. Chin J Anal Chem.40 (3),354–358.

[47] Tehrani, M.S., Vardini, M.T., Azar, P.A.,  & Husain, S.W.,(2010). Molecularly Imprinted Polymer Based PVC-Membrane-Coated Graphite Electrode for the Determination of Metoprolol.Int. J. Electrochem. Sci.,5 , 88 – 104.

[48] Javanbakht, M., Fard, S. E., Mohammadi, A., Abdouss, M., Ganjali, M. R., Norouzi, P., & Safaraliee, L. (2008). Molecularly imprinted polymer based potentiometric sensor for the determination of hydroxyzine in tablets and biological fluids. Analytica chimica acta612(1), 65-74.

[49] Yassen, H. M., & Abdulla, N. I. (2016). PVC Polymeric Membranes Coated Graphite Electrodes Based on Molecularly Imprinted Polymers for the Selective Determination of Glibenclamide. Ibn AL-Haitham Journal For Pure and Applied Science29(1), 133-149.

[50] SM Hassan, S., Amr, E., El-Galil, A., Abd El-Naby, H., A Al-Omar, M., H Kamel, A., & Khalifa, N. M. (2019). Potentiometric PVC-Membrane-Based Sensor for Dimethylamine Assessment Using A Molecularly Imprinted Polymer as A Sensory Recognition Element. Polymers11(10), 1695.

[51] Darmokoesoemo H., N. Widayanti N.,Khasanah M., Kusuma H.S.,(2017). Analysis of Uric Acid using carbon paste electrodes modified by molecularly imprinted polymer as potentiometry sensor.RASÀYAN J.Chem.10( 1), 54-58.